Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:53:07.931Z Has data issue: false hasContentIssue false

Single Crystal Growth of YBa2Cu4O8 and Y2Ba4Cu7O15 Under High Oxygen Pressure

Published online by Cambridge University Press:  15 February 2011

T. Miyatake
Affiliation:
Superconductivity Research Lab., ISTEC, Tokyo 135, Japan.
T. Takata
Affiliation:
Superconductivity Research Lab., ISTEC, Tokyo 135, Japan.
K. Yamaguchi
Affiliation:
Superconductivity Research Lab., ISTEC, Tokyo 135, Japan.
K. Takamuku
Affiliation:
Superconductivity Research Lab., ISTEC, Tokyo 135, Japan.
N. Koshizuka
Affiliation:
Superconductivity Research Lab., ISTEC, Tokyo 135, Japan.
S. Tanaka
Affiliation:
Superconductivity Research Lab., ISTEC, Tokyo 135, Japan.
K. Shibutani
Affiliation:
Superconducting & Cryogenic Tech. Center, Kobe Steel, Ltd., Kobe 651–22, Japan.
S. Hayashi
Affiliation:
Superconducting & Cryogenic Tech. Center, Kobe Steel, Ltd., Kobe 651–22, Japan.
R. Ogawa
Affiliation:
Superconducting & Cryogenic Tech. Center, Kobe Steel, Ltd., Kobe 651–22, Japan.
Y. Kawate
Affiliation:
Superconducting & Cryogenic Tech. Center, Kobe Steel, Ltd., Kobe 651–22, Japan.
Get access

Abstract

We investigate the crystal growth of YBa2Cu4O8 (124) and Y2Ba4Cu7O15 (247) in Al2O3 crucibles at an oxygen partial pressure of 20MPa employing an O2- HIP apparatus in a mixed gas environment of Ar-20%O2. Various melts compositions, rich in Ba and Cu, are explored to optimize crystal growth of 124. Large 124 single crystals up to a size of 1×0.5×0.05mm3 are obtained from compositions with about 65˜67%CuO. 247 single crystals having a maximum size of 3×1.5×0.05mm3 are grown from the same composition of melts. 124 crystals exhibit superconductivity at 75K. 247 crystals show Tc of 20K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Karpinski, J., Rusiecki, S., Kaldis, E., Bucher, B. and Jilek, E., Physica C 160, 449(1989).CrossRefGoogle Scholar
2. Morris, D.E., Markelz, A.G., Fayn, B. and Nickel, J.H., Physica C 168, 153(1990).Google Scholar
3. Wada, T., Suzuki, N., Ichinose, A., Yaegashi, Y., Yamauchi, H. and Tanaka, S., Appl.Phys.Lett. 57, 81(1990).CrossRefGoogle Scholar
4. Bordet, P., Chaillout, C., Chenavas, J., Hodeau, J.L., Marezio, M., Karpinski, J. and Kaldis, E., Nature 334, 596(1988).CrossRefGoogle Scholar
5. Hazen, R.M., Finger, L.W. and Morris, D.E., Appl.Phys.Lett. 54, 1057(1989).CrossRefGoogle Scholar
6. Karpinski, J., Kaldis, E., Rusiecki, S. and Jilek, E., J.Less-Common Met. 150, 129(1989).Google Scholar