Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:46:47.547Z Has data issue: false hasContentIssue false

Single Crystal Boron-Doped Diamond Synthesis

Published online by Cambridge University Press:  31 January 2011

Timothy Grotjohn
Affiliation:
[email protected], Michigan State University, ECE, East Lansing, Michigan, United States
Shannon Nicley
Affiliation:
[email protected], Michigan State University, ECE, East Lansing, Michigan, United States
Dzung Tran
Affiliation:
[email protected], Michigan State University, ECE, East Lansing, Michigan, United States
Donnie K. Reinhard
Affiliation:
[email protected], Michigan State University, ECE, East Lansing, Michigan, United States
Michael Becker
Affiliation:
[email protected], Fraunhofer USA-CCL, East Lansing, Michigan, United States
Jes Asmussen
Affiliation:
[email protected], Michigan State University, ECE, East Lansing, Michigan, United States
Get access

Abstract

The electrical characteristics of high quality single crystal boron-doped diamond are studied. Samples are synthesized in a high power-density microwave plasma-assisted chemical vapor deposition (CVD) reactor at pressures of 130-160 Torr. The boron-doped diamond films are grown using diborane in the feedgas at concentrations of 1 to 50 ppm. The boron acceptor concentration is investigated using infrared absorption and a four point probe is used to study the conductivity. The temperature dependent conductivity is analyzed to determine the boron dopant activation energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ramamurti, R., Becker, M., Schuelke, T., Grotjohn, T., Reinhard, D. and Asmussen, J., Diam. Rel. Mater. 17, 13201323 (2008).Google Scholar
2 Ramamurti, R., Becker, M., Schuelke, T., Grotjohn, T., Reinhard, D. and Asmussen, J., Diam. Rel. Mater. 18, 704706 (2009).Google Scholar
3 Kuo, K.P. and Asmussen, J., Diam. Rel. Mater. 6, 10971105 (1997).Google Scholar
4 Collins, A.T. and Williams, A.W.S., J. Phys. C.: Solid St. Phys. 4, 17891800 (1971).Google Scholar
5 Gheeraert, E., A Deneuville and Mambou, J., Diam. Rel. Mater. 7, 15091512 (1998).Google Scholar
6 Thonke, K., Semicond. Sci. Technol. 18, S20–S26 (2003).Google Scholar
7 Blank, V.D., Kuznetsov, M.S., Nosukhin, S.A., Terentiev, S.A. and Denisov, V. N.., Diam. Rel. Mater. 16, 800804 (2007).Google Scholar
8 Smits, F.M., The Bell System Technical Journal 711718 (May 1958).Google Scholar
9 Valdes, L.B., Proc. IRE, 42, 420427 (1954).Google Scholar
10 Lagrange, J.P., Deneuville, A. and Gheeraert, E., Diam. Rel. Mater. 7, 13901393 (1998).Google Scholar
11 Pearson, G.L. and Bardeen, J., Phys. Rev, 75, 865883 (1949)Google Scholar
12 Borst, T.H. and Weis, O. Diam. Rel. Mater. 4, 948953 (1995).Google Scholar
13 Teraji, T., Wada, H., Yamamoto, M., Arima, K. and Ito, T., Diam. Rel. Mater., 15, 602606 (2006).Google Scholar
14 Hayashi, K., Yamanaka, S., Watanabe, H., Sekiguchi, T., Okushi, H. and Kajimura, K., J. Appl. Phys. 81, 744753 (1997).Google Scholar
15 Baron, C., Wade, M., Deneuville, A., Bustarret, E., Kocinievski, T., Chevalier, J., Uzan-Saguy, C., Kalish, R. and Butler, J., Diam. Rel. Mater. 14, 350354 (2005).Google Scholar
16 Butler, J. E., Geis, M. W., Krohn, K. E., Lawless, J. Jr. , Deneault, S., Lyszczarz, T. M., Flechtner, D. and Wright, R., Semicond. Sci. Technol. 18, S67–S71 (2003)Google Scholar