Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T06:58:45.071Z Has data issue: false hasContentIssue false

Simulations of Shocked Methane Including Self-consistent Semiclassical Quantum Nuclear Effects*

Published online by Cambridge University Press:  07 November 2013

Tingting Qi
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
Evan J. Reed
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
Get access

Abstract

A methodology is described for atomistic simulations of shock-compressed materials that incorporates quantum nuclear effects on the fly. We introduce a modification of the multi-scale shock technique (MSST) that couples to a quantum thermal bath described by a colored noise Langevin thermostat. The new approach, which we call QB-MSST, is of comparable computational cost to MSST and self-consistently incorporates quantum heat capacities and Bose-Einstein harmonic vibrational distributions. As a first test, we study shock-compressed methane using the ReaxFF potential. The Hugoniot curves predicted from the new approach are found comparable with existing experimental data. We find that the self-consistent nature of the method results in the onset of chemistry at 40% lower pressure on the shock Hugoniot than observed with classical molecular dynamics. The temperature change associated with quantum heat capacity is determined to be the primary factor in this shift.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Reprinted in part with permission from (Qi, T., Reed, E. J., Simulations of Shocked Methane Including Self-Consistent Semiclassical Quantum Nuclear Effects. Journal of Physical Chemistry A, 116, 10451–10459, doi:10.1021/jp308068c). Copyright (2012) American Chemical Society.

References

REFERENCES

Dlott, D. D. Annu. Rev. Phys. Chem. 2011, 62, 575597.CrossRefGoogle Scholar
Chenoweth, K.; van Duin, A. C. T.; Goddard, W. A. I. J. Phys. Chem. A 2008, 112, 10401053.CrossRefGoogle Scholar
Goldman, N.; Fried, L. E. J. Phys. Chem. C 2012, 116, 21982204.CrossRefGoogle Scholar
Moriarty, J. A.; Benedict, L. X.; Glosli, J. N.; Hood, R. Q.; Orlikowski, D. A.; Patel, M. V.; Soderlind, P.; Streitz, F. H.; Tang, M. J.; Yang, L. H. J. Mater. Res. 2006, 21, 563573.CrossRefGoogle Scholar
Dammak, H.; Chalopin, Y.; Laroche, M.; Hayoun, M.; Greffet, J.-J. Phys. Rev. Lett. 2009, 103, 190601/1190601/4.CrossRefGoogle Scholar
Reed, E. J.; Fried, L. E.; Joannopoulos, J. D. Phys. Rev. Lett. 2003, 90, 235503/1235503/4.Google Scholar
Plimpton, S. J. Comp. Phys. 1995, 117, 119.CrossRefGoogle Scholar
Gray, D. L.; Robiette, A. G. Mol. Phys. 1979, 37, 19011920.CrossRefGoogle Scholar
Mattsson, T. R., Lane, J. M. D., Cochrane, K. R., Desjarlais, M. P., Thompson, A. P., Pierce, F., and Grest, G. S., Phys. Rev. B, 81 054103 (2010).CrossRefGoogle Scholar
Nellis, W. J.; Ree, F. H.; van Thiel, M.; Mitchell, A. C. J. Chem. Phys. 1981, 75, 30553063.Google Scholar
Ancilotto, F.; Chiarotti, G. L.; Scandolo, S.; Tosatti, E. Science 1997, 275, 12881290.Google Scholar
Benedetti, L. R.; Nguyen, J. H.; Caldwell, W. A.; Liu, H.; Kruger, M.; Jeanloz, R. Science 1999, 286, 100102.Google Scholar
Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. Thermodynamic Properties of Individual Substances, 4th ed. 1989, Vols. 1 and 2.Google Scholar
Goldman, N.; Reed, E. J.; Fried, L. E. J. Chem. Phys. 2009, 131, 204103/1204103/8.Google Scholar
Li, D.; Zhang, P.; Yan, J. Phys. Rev. B 2011, 84, 184204/1184204/7.Google Scholar
Radousky, H. B.; Mitchell, A. C.; Nellis, W. J. J. Chem. Phys. 1990, 93, 82358239.Google Scholar
Elert, M. L.; Zybin, S. V.; White, C. T. J. Chem. Phys. 2003, 118, 97959801.Google Scholar