Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T06:42:14.638Z Has data issue: false hasContentIssue false

Simulation Study of IBE Process for III-V Compounds in Mesa and Trenches

Published online by Cambridge University Press:  10 February 2011

L. Houlet
Affiliation:
Laboratoire des Plasmas et des Couches Minces, Institut des Matériaux de Nantes, UMR 6502-CNRS-Univ de Nantes, France
A. Rhallabi
Affiliation:
Laboratoire des Plasmas et des Couches Minces, Institut des Matériaux de Nantes, UMR 6502-CNRS-Univ de Nantes, France
G. Turban
Affiliation:
Laboratoire des Plasmas et des Couches Minces, Institut des Matériaux de Nantes, UMR 6502-CNRS-Univ de Nantes, France
Get access

Abstract

The Ion Beam Etching (IBE) model is developed assuming the analogy between the evolution of hydrodynamic surfaces and that of vacuum-solid interfaces. The main physical phenomenon in the IBE is the ion sputtering where the transfer of ion energy to the surface allows to eject the surface atoms. The local etching rate is thus proportional to the energetic flux and to the sputtering yield. Mask erosion and shadowing are taken into account in the model. The angular dependence of the sputtering yield permits to underscore the faceting and trenching phenomena which respectively represent the formation of the facets in mask comers and the overetching in the trench sides. Besides, the effect of mask erosion on pattern transfer of both trench and mesa structures is studied. In comparison with the experimental profile, the simulated etching profile of the mesa, based on the IBE model, shows a good agreement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shaqfeh, E. S. G. and Jurgensen, C. W., J. Appl. Phys. 66, p. 4664 (1989).Google Scholar
2. Jurgensen, C. W. and Shaqfeh, E. S. G., J. Vac. Sci. Technol. 137, p. 1488 (1989).Google Scholar
3. Singh, V. S., Shaqfeh, S. G., Mc Vittie, J. P., J. Vac. Sci. Technol. B 12, p. 2952 (1994).Google Scholar
4. Abraham-shrauner, B., J. Vac. Sci. Technol. B 12, p. 2347 (1994).Google Scholar
5. Arnold, J. C. and Sawin, H. H., J. Vac. Sci. Technol. A12, p. 620 (1994).Google Scholar
6. chen, W. and Abraham-Shrauner, B., J. Apll. Phys. 81, p. 2547 (1997).Google Scholar
7. Hsiau, Z., Kan, E. C., Mc Vittie, J. P. and Dutton, R. W., IEEE Transactions on Elec. Devices, 44, p. 1375 (1997).Google Scholar
8. Somekh, S., J. Vac. Sci. Technol. 13, p. 1003 (1976).Google Scholar
9. Bouadma, N., Devolder, P., Jusseraud, B., Ossart, P., Appl. Phys. Lett. 48, p. 1285 (1976).Google Scholar
10. Eckstein, W., Computer Simulation of Ion-Solid Interactions, Springer Ser. Mater. Sci., 10 (Springer, Berlin, Heidelberg 1991).Google Scholar