Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T04:04:17.921Z Has data issue: false hasContentIssue false

Simulation Study of Copper Cluster Deposition

Published online by Cambridge University Press:  21 March 2011

Jin C. Kang
Affiliation:
Semiconductor Process and Devices Laboratory, Department of Electronic Engineering, Chung-Ang University, 221 HukSuk-Dong, DongJak-Ku, Seoul 156-756, Korea
Jeong W. Kang
Affiliation:
Semiconductor Process and Devices Laboratory, Department of Electronic Engineering, Chung-Ang University, 221 HukSuk-Dong, DongJak-Ku, Seoul 156-756, Korea
Ho J. Hwang
Affiliation:
Semiconductor Process and Devices Laboratory, Department of Electronic Engineering, Chung-Ang University, 221 HukSuk-Dong, DongJak-Ku, Seoul 156-756, Korea
Get access

Abstract

The ionized cluster beam deposition of Al and Cu clusters has been investigated with a classical molecular dynamics simulation and the Metropolis Monte Carlo simulation. The spreading of the cluster has been studied as functions of cluster size and initial cluster energy. When the local area reached local melting spot on the surface, around the impact point of an energetic cluster, during a few ps, intermixing was easily achieved and a good epitaxial film with optimum bulk density was formed. For uniform film growth using cluster impact, it is necessary to make the local area temperature higher than melting temperature on the surface around the impact point of an energetic cluster.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamada, I., Taksoka, H., Usui, H., and Takagi, T., J. Vac. Sci. Technol. A 4, 722 (1986).Google Scholar
2. Beuhler, R. J., Friedlander, G., and Friedman, L., Phys. Rev. Lett. 63, 1292 (1989).Google Scholar
3. Echenique, P. M., Manson, J. R., and Ritchie, R. H., Phys. Rev. Lett. 64, 1413 (1990).Google Scholar
4. Jensen, P., Rev. Mod. Phys. 71, 1695 (1999).Google Scholar
5. Hsieh, H. and Averback, R. S., Phys. Rev. B 42, 5365 (1990).Google Scholar
6. Cheng, H. P. and Landman, U., J. Phys. Chem. 98, 3527 (1994).Google Scholar
7. Rongwu, L. and Zhengying, P., Phys. Rev. B 53, 4156 (1996).Google Scholar
8. Kang, J. W., Choi, K. S., Byun, K. R., and Hwang, H. J., Korean, J. Phys. Soc. 36, 248 (2000).Google Scholar
9. Kang, J. W. and Hwang, H. J., Korean, J. Vac. Soc. 9, 273 (2000)(Korean).Google Scholar
10. Muller, K., J. Appl. Phys. 61, 2516 (1987).Google Scholar
11. Haberland, H., Insepov, Z., and Moseler, M., Phys. Rev. B 51, 11061 (1995).Google Scholar
12.H. Lu, W., Xie, J. Q., and Feng, J. Y., Nucl. Instr. and Meth. Phys. B 170, 71 (2000).Google Scholar
13. Kelchener, C. L. and DePristo, A. E., Nanostructured Materials 8, 253 (1997).Google Scholar
14. Hou, Q., Hou, M., Bardotti, L., Prevel, B., Melinon, P., and Perez, A., Phys. Rev. B 62, 2825 (2000).Google Scholar
15. Kang, J. W. and Hwang, H. J., to be published in Comp. Mater. Sci. (2001); to be published in Phys. Rev. B. (2001).Google Scholar
16. Kang, J. W., Choi, K. S., Kang, J. C. and Hwang, H. J., Korean, J. Phys. Soc. 38, 158 (2001).Google Scholar
17. Allen, M. P. and Tildesley, D. J., Chap. 4 in “Computer Simulation of Liquids” (Clarendon press, Oxiford, 1987).Google Scholar
18. Tomanek, D., Aligia, A. A., and Balseiro, C. A., Phys. Rev. B 32, 5051 (1985).Google Scholar
19. Cleri, F. and Rosato, V., Phys. Rev. B 48, 22 (1993).Google Scholar
21. Palacios, F. J., Iniguez, M. P., Lopez, M. J., and Alonso, J. A., Phys. Rev. B 60, 2908 (1999).Google Scholar