No CrossRef data available.
Article contents
Simulation of Surface Diffusion Using Embedded Atom Potentials in FCC Metals
Published online by Cambridge University Press: 15 February 2011
Abstract
The binding energies of gold, silver and copper adatoms and their clusters to each (111) surface have been calculated. The binding energy EN of an N-adatom cluster can be roughly written as EN=3NE1+mE2, where 3E1, is the binding energy of a single adatom to the (111) surface and m is the number of bonds within the cluster and E2 is the binding energy of the bond within the cluster. It was found that E1=0.95eV, E2=0.42–0.49eV for gold, E1=0.62eV, E2=0.38-0.44eV for silver and E1=0.81eV, E2=0.43–0.49eV for copper (by use of a newly determined N-body embedded atom potential). The activation energies of motion of these adatom clusters on each (111) surfaces have been calculated by use of a newly determined N-body embedded atom potential and molecular dynamics method.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997