Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:28:36.789Z Has data issue: false hasContentIssue false

Simulation of Spatially Dependent Excitation Rates and Power Deposition in RF Discharges for Plasma Processing

Published online by Cambridge University Press:  21 February 2011

M. J. Kushner
Affiliation:
Mathematical Sciences Northwest, 2755 Bellevue Way, Bellevue, WA 98004
H. N. Anderson
Affiliation:
University of New Mexico, Albuquerque, NM 87131
P. J. Hargis
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87185
Get access

Abstract

In low pressure, radio frequency (RF) discharges of the type used in plasma processing of semiconductor materials, the rate of electron impact excitation and energy transfer processes depends upon both the phase of the RF excitation and position in the discharge. Electron impact collisions create radicals that diffuse or drift to the surfaces of interest where they are adsorbed or otherwise react. To the extent that these radicals have a finite lifetime, their transport time from point of creation to surface of interest is an important parameter. The spatial dependence of the rate of the initial electron impact collisions is therefore also an important parameter. The power that sustains the discharge is coupled into the system by two mechanisms: a high energy “e-beam” component of the electron distribution resulting from electrons falling through or being accelerated by the sheaths, and by “joule heating” in the body of the plasma. In this paper, we will discuss the spatial dependence of excitation rates and the method of power deposition in RF discharges of the type used for plasma processing. The basis of that discussion will be results from a Monte-Carlo plasma simulation code for RF discharges. Preliminary results from a model for the etching of silicon in SF6 /O2 plasmas will be presented and evidence for long term changes in the manner of energy deposition will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koenig, H. R. and Maissel, L. I., I.B.M. J. Res. Develop. 14, 168 (1970)Google Scholar
2. Kushner, M. J., J. Appl. Phys. 54, 4958 (1983)CrossRefGoogle Scholar
3. Garscadden, A., Duke, G. L., and Bailey, W. F., Appl. Phys. Lett. 43, 1012 (1983)CrossRefGoogle Scholar
4. Rapp, D. and Englander-Golden, P., J. Chem. Phys. 43, 1465 (1965)Google Scholar
5. Roth, R. M., Spears, K. G., and Wong, G., Appl. Phy. Lett. 45, 28 (1984)CrossRefGoogle Scholar
6. Gottscho, R. A., Burton., R. H., Flamm, D. L., Donnelly, V. M., and Davis, G. P., J. Appl. Phys. 55, 2707 (1984)Google Scholar
7. Rosny, G., Mosburg, E. R. Jr., Abelson, J. R., Devaud, G., and Kerns, R. C., J. Appl. Phys. 54, 2272 (1983)Google Scholar
8. Light, R. W. and Bell, H. B., J. Electrochem. Soc. 130, 1567 (1983)CrossRefGoogle Scholar
9. Kushner, M. J., J. Appl. Phys. 53, 2923 (1982)CrossRefGoogle Scholar
10. Morgan, W. L., JILA Inform. Cen. Rept. No. 19 (JILA, Boulder, CO, 1979)Google Scholar
11. Wagner, J. J. and Brandt, W. W., Plasma Chem. Plasma Proc. 1, 201 (1981)CrossRefGoogle Scholar
12. d'Agostino, R. and Flamm, D. L., J. Appl. Phys. 52, 162 (1981)Google Scholar
13. Tang, C. C. and Hess, D. W., J. Electrochem. Soc. 131, 115 (1984)CrossRefGoogle Scholar
14. Turban, G. and Rapeaux, M., J. Electrochem. Soc. 130, 2231 (1983)CrossRefGoogle Scholar
15. Kline, L. E., Davies, D. K., Chen, C. L. and Chantry, P. J., J. Appl. Phys. 50, 6789 (1979)Google Scholar
16. Gryzinski, M.,Phys. Rev. 138, A336 (1965)CrossRefGoogle Scholar
17. Vriens, L., Phys. Rev. 141, 88 (1966)Google Scholar
18. Stull, D. R. and Prophet, H., JANAF Thermochemical Tables, 2nd ed, NSRDSNBS 37 (Nat. Bur. Std., Washington, D.C., 1971)CrossRefGoogle Scholar
19. Benson, S. W., Thermochemical Kinetics, 2nd ed (Wiley,NewYork, 1976)Google Scholar
20. Olson, R. E., Peterson, J. R., Moseley, J., J. Chem. Phys. 53, 3391 (1970)Google Scholar
21. Rothman, L. B., Mauer, J. L., Schwartz, G. C., and Logan, J. S., Plasma Processing, Electrochem. Soc. Proceed. Ser. (Pennington, NJ, 1981)Google Scholar
22. Kline, L. E., “omputer Simulation of SF Plasma Etching of Silicon”, Paper F-6, 36th Gaseous Electronics Conlerence, Albany, New York, 1983.Google Scholar