Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:39:04.310Z Has data issue: false hasContentIssue false

SIMULATION OF NANOSCALE ETCHING FOR NANOTUBE AND GRAPHENE DEVICES

Published online by Cambridge University Press:  24 May 2012

Koichi Kusakabe*
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
Get access

Abstract

In order to find an efficient method to etch nano-carbon materials by hydrogenation in a controlled manner, we have studied hydrogen-atom adsorption on various deformed nanotubes using computer simulations based on the density-functional theory. The nanotube with an atomic lack is compared to a deformed tube with the Stone-Wales defect and a twisted tube wall. Similar to the known experimental etching condition for graphene, an atomic lack is effective to accumulate hydrogen atoms around the defect. Compared to the flat graphene, however, nanotube walls with curvature allow on-top adsorption of a hydrogen atom and selectivity in the hydrogenated site becomes worse. To achieve a controlled etching process, usage of a tungsten tip which realizes focused hydrogenation is proposed for natotubes and curved graphene.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hassanien, A., Tokumoto, M., Umek, P., Vrbanič, D., Mozetič, M., Mihailovič, D., Venturiani, P., and Pejovnik, S., Nanotech. 16, 278 (2005).CrossRefGoogle Scholar
Zhang, G., Qi, P., Wang, X., Lu, Y., Li, X., Tu, R., Bangsaruntip, S., Mann, D., Zhang, L., and Dai, H., Science 314, 974 (2006).CrossRefGoogle Scholar
Zhang, G., Qi, P., Wang, X., Lu, Y., Mann, D., Li, X., and Dai, H., J. Am. Chem. Soc. 128, 6026 (2006).CrossRefGoogle Scholar
Ziatdinov, M., Fujii, S., Kiguchi, M., Mori, T., and Enoki, T., Autumn meeting of Phys. Soc. Jpn. (2011) 24aTE-3.Google Scholar
Ziatdinov, M., Fujii, S., Kusakabe, K., Kiguchi, M., Mori, T., and Enoki, T., Spring meeting of Phys. Soc. Jpn. (2012) 27aSB-10.Google Scholar
Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Giannnozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulato, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
Hosoya, N., Kusakabe, K., and Uma Maheswari, S., Jpn. J. Appl. Phys. 50, 105101 (2011).CrossRefGoogle Scholar
Lehtinen, P.O., Foster, A.S., Ma, Y., Krasheninnikov, A.V., and Nieminen, R.M., Phys. Rev. Lett. 93, 187202 (2004).CrossRefGoogle Scholar