Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:10:36.910Z Has data issue: false hasContentIssue false

Simulating Liquid GeTe

Published online by Cambridge University Press:  01 February 2011

James R. Chelikowsky*
Affiliation:
[email protected], University of Texas at Austin, Institute for Computational Engineering and Sciences, 1 University Station C0200, Austin, Texas, 78735, United States, 512 471 3312, 512 471 8694
Get access

Abstract

One of the most difficult problems in condensed matter physics is to describe the microscopic liquid state. Owing to the dynamical nature of the liquid state, it is not possible to discuss specific microscopic structures, only ensemble averages can be specified. Such averages can be performed via molecular dynamics simulations. A problematic issue in performing such simulations is computing accurate interatomic forces. Although classical many-body potentials can be use for simulations of covalent materials, one must effectively map quantum phenomena such as hybridization onto such potentials. This mapping is complex and lacking a well-defined prescription. This step can be avoided by employing quantum forces from the pseudopotential-density functional method. Using molecular dynamics with quantum forces, we examine the local atomic order as well as some dynamic and electronic properties of the semiconducting liquid GeTe. Near the melting temperature, the Peierls distortion responsible for the lower temperature crystal phase of GeTe is shown to manifest itself within the liquid structure. At higher temperatures in the liquid, increasing disorder leads to an eventual semiconductor-metal transition. The calculated kinematic viscosity of the liquid is found to agree with the experimental value and is shown to arise from the small diffusion coefficient of the Te atoms. Using an ensemble average, we predict the dc conductivity of the melt to be consistent with recent measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Phillips, S.V., Booth, R.E. and McMillan, P.W., J. Non-Cryst. Solids 4, 510 (1970); A. Feltz, H.J. Buttner, F.J.Lippmann and W. Maul, J. Non-Cryst. Solids 8-10, 64 (1972); S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968); J. Feinleib, J. de-Neufville and S.C. Moss, Bull. Amer. Phys. Soc. 15, 245 (1970); C. Sie, P. Dugan and S.C. Moss, Journ. Non-Cryst. Solids 8-10, 377 (1972).Google Scholar
2. Nicotera, E., Corchia, M., Giorgi, G. De, Villa, F. and Antonini, M., J. Non-Cryst. Solids 11, 417 (1973); H. Neumann, W. Hoyer, W. Matz and M. Wobst, J. Non-Cryst. Solids 97-98, 1251 (1987); C. Bergman, C. Bichara, R. Bellissent, R. Céolin, J.P. Gaspard and P. Chieux, Ann. Fisica 86B, 138 (1990); K. Maruyama, M. Misawa, M. Inui, S. Takeda, Y. Kawakita and S. Tamaki, J. Non-Cryst. Solids 205, 106 (1996).Google Scholar
3. Glazov, V.M., Chizhevskaya, S.N. and Glagoleva, N.N., Liquid Semiconductors (Plenum New-York, 1969).Google Scholar
4. Enderby, J. E. and Barnes, A. C., Rep. Prog. Phys. 53, 85 (1990) and references therein.Google Scholar
5. Gaspard, J.-P., Raty, J.-Y., Céolin, R. and Bellissent, R., J. Non-Cryst. Solids 205–207, 75 (1990).Google Scholar
6. Godlevsky, V. V., Derby, J. J. and Chelikowsky, J. R., Phys. Rev. Lett. 81, 4959 (1998).Google Scholar
7. Raty, J.-Y., Gaspard, J.-P., Bionducci, M., Céolin, R. and Bellissent, R., J. Non-Cryst. Solids 250–252, 277 (1999).Google Scholar
8. Hosokawa, S., Hari, Y., Kouchi, T., Ono, I., Taniguchi, M., Hiraya, A., Takata, Y., Kosugi, N. and Watanabe, M., J. Phys.:Condens. Matter 10, 1931 (1998); F. Betts, A. Bienenstock, and S.R. Ovshinsky, J. Non-Cryst. Solids 4, 554 (1970); D.B. Dove, M.B. Heritage, K.L. Chopra and S.K. Bahl, Appl. Phys. Lett. 16, 138 (1970); O. Uemura, Y. Sagara, M. Tsushima, T. Kamikawa and T. Satow, J. Non-Cryst. Solids 33, 71 (1979); G.B. Fisher, J. Tauc and Y. Verhelle, Amorphous and Liquid Semiconductors, ed. J. Stuke, p1259 (Taylor &Francis, London, 1974); Y. Maeda and M. Wakagi, Japan. J. Appl. Phys. 30, 101 (1991).Google Scholar
9. Pickart, S.J., Sharma, Y.P. and Neufville, J.P. de, J. Non-Cryst. Solids 34, 183 (1979), P. Boolchand, B.B. Triplett, S.S. Hanna and J.P. de Neufville, Mössbauer Effect Methodology (Plenum, New-York, 1974).Google Scholar
10. Schlieper, A., Feutelais, Y., Fries, S.G., Legendre, B. and Blachnik, R., Calphad 23, 1 (1999).Google Scholar
11. Chattopadhyay, T., Boucherle, J.X. and Schnering, H.G. von, Solid State Phys. 20, 1431 (1987).Google Scholar
12. Tsuchiya, Y. and Saitoh, H., J. Phys. Soc. Jpn. 62, 1272 (1993); Y. Tsuchiya, J. Phys. Soc. Japan 60, 227 (1991).Google Scholar
13. Chelikowsky, J.R., Derby, J.J., Godlevsky, V., Jain, M. and Raty, J.Y., J. Phys. Cond. Matt. 13, R817 (2001).Google Scholar
14. Phillpot, S.R., Yip, S. and Wolf, D., Computers in Physics 3, 20 (1989).Google Scholar
15. Nosé, S., Mol. Phys. 52, 255 (1984); J. Chem. Phys. 81, 511 (1984).Google Scholar
16. Kubo, R., Rep. Prog. Theor. Phys. 29, 255 (1966); H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin), 1984; R.L. Stratanovitch, Topics in the Theory of Random Noise (Gordon Breach, New York), 1967; N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam), 1981.Google Scholar
17. Glazov, V.M. and Shchelikov, O.D., Sov. Phys. Semicond. 18, 411 (1984).Google Scholar
18. Troullier, N. and Martins, J.L., Phys. Rev. B 43, 1993 (1991).Google Scholar
19. Ceperley, D.M. and Alder, B.J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
20. Raty, J.Y., Ghosez, Ph., Gaspard, J.P., Bichara, C., Bionducci, M., Bellissent, R., Céolin, R., Chelikowsky, J. R. and Godlevsky, V., Phys. Rev. B 64, 235209 (2001); J.Y. Raty, V. Godlevsky, J.P. Gaspard, C. Bichara, M. Bionducci, R. Bellissent, R. Céolin, J.R. Chelikowsky and Ph. Ghosez, Phys. Rev. B 65, 115205 (2002).Google Scholar
21. Salmon, P. S. and Liu, J., J. Phys.: Condens. Matter 6, 1449 (1994); I. Petri, P. S. Salmon, H. E. Fisher, J. Phys.: Condens. Matter 11, 7051 (1999).Google Scholar
22. Bichara, C., Pellegatti, A. and Gaspard, J.-P., Phys. Rev. B 47, 5002 (1993).Google Scholar
23. Frenkel, J., Kinetic theory of liquids (Oxford University Press, Oxford, 1946).Google Scholar
24. Hansen, J.P. and McDonald, I.R., Theory of simple liquids (Academic Press, London, 1976).Google Scholar
25. Ko, E., Alemany, M. M. G. and Chelikowsky, J.R., J. Chem. Phys. 121, 942 (2004).Google Scholar
26. Kubo, R., J. Phys. Soc. Jpn. 12, 570 (1957); D. Greenwood, Proc. Phys. Soc. 71, 585 (1958).Google Scholar
27. Hybertsen, M.S. and Louie, S.G., Phys. Rev. B 35, 5585 (1987); ibid 5063 (1987); Phys. Rev. B 37, 2733 (1988); R.W. Godby, M. Schluter, and L.J. Sham, Phys. Rev. B 35, 4170 (1987); X. Blase, A. Rubio, S.G. Louie and M.L. Cohen, Phys. Rev. B 52, R2225 (1995); H.N. Rojas, R.W. Godby, and R.J. Needs, Phys. Rev. Lett. 74, 1827 (1995).Google Scholar