Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:30:41.605Z Has data issue: false hasContentIssue false

Sims Analysis of the Contamination of Porous Silicon by Ambient Air

Published online by Cambridge University Press:  15 February 2011

L T Canham
Affiliation:
DRA Electronics Division, RSRE, St Andrews Road Malvern, Worcs WR14 3PS, UK
G W Blackmore
Affiliation:
DRA Electronics Division, RSRE, St Andrews Road Malvern, Worcs WR14 3PS, UK
Get access

Abstract

Microporous silicon layers contain an enormous surface area (> 500 m2 cm−3) that influences their structural, optical and electrical properties. When freshly etched the pore wall surface can be extremely clean and composed primarily of hydrogen and fluorine. Extended storage in ambient air however will convert this clean hydride surface into that of a contaminated native oxide.

Using dynamic SIMS profiling we demonstrate here that slow oxidation at room temperature by ambient air is accompanied by impregnation with atmospheric boron and sulphur but that levels of calcium and sodium for example, remain exceedingly low. We conclude that the pore wall surface is very efficiently protected from particulate - related airborne species but is susceptible to contamination from small molecules present in the atmosphere at trace levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referecnces

1 Canham, L. T., Appl Phys Lett, 57, 1046 (1990).Google Scholar
2 Canham, L. T., Houlton, M. R., Leong, W. Y., Pickering, C., Keen, J. M., J Appl Phys, 70, 422 (1991).CrossRefGoogle Scholar
3 Fogg, T. R., Duce, R. A., Fasching, J. L., Anal Chem, 55, 2179, (1983).Google Scholar
4 Fogg, T. R., Duce, R. A., J Geophys Res, 90, D2, 3781 (1985).CrossRefGoogle Scholar
5 Robbins, D. J., Pidduck, A. J., Glasper, J. L., Young, I. M., Pickering, C., Thin Solid Films, 182, 299 (1989) and references therein.CrossRefGoogle Scholar
6 Downing, R. G., Lavine, J. P., Hossain, T. Z., Russell, J. B., Zenner, G. P., J Appl Phys, 67, 3652 (1990).Google Scholar
7 Stevie, F. A., Martin, E. P., Kahora, P. M., Cargo, J. T., Nanda, A. K., Harrus, A. S., Muller, A. J., Krautter, H. W., J Vac Sci Techn, A 9, 2813 (1991).Google Scholar
8 Altshuller, A. P., Atmos Environ, 18, 1421, (1984).Google Scholar
9 Maroulis, P. J., Torres, A. L., Goldberg, A. B., Bandy, A. R., J Geophys Res, 85, 7345 (1980).Google Scholar
10 Torres, A. L., Maroulis, P. J., Goldberg, A. B., Bandy, A. R., J Geophys Res, 85, 7357 (1980).Google Scholar
11 Meek, R. L., Buck, T. M., Gibbon, C. F., J Electrochem Soc, 120, 1241 (1973).Google Scholar
12 Yang, M. G., Koliwod, K. M., McGuire, G. E., J Electrochem Soc, 122, 675 (1975).Google Scholar
13 Zazzera, L. C., Becker, L. S., Beery, W. J., Sobol, P. E., Chat, W., Proc 1st Symp on Cleaning Techn in Semic Device Manufacturing. Electrochem, Soc Proc 90-9 edited by Ruzyhlo, J. and Novak, R. E. (The Electrochem Soc, Pennington NJ 1989) p43.Google Scholar
14 Hockett, R. S. and Katz, W., J Electrochem Soc, 136, 3481 (1989).Google Scholar
15 Stingeder, G., Grunder, M. and Grasserbaur, M., Surf and Interf Anal, 11, 407 (1988).Google Scholar
16 Glasper, J. L., Robbins, D. J. and Pidduck, A. J., Submited to Semic Sci and Technol (1992)Google Scholar
17 Knolle, W. R. and Retajczyk, T. F., J Electrochem Soc, 120, 1106 (1973).Google Scholar
18 Phillips, B. F., Burkman, D. C., Schmidt, W. R., Peterson, C. A., J Vac Sci Techn A1, 646, (1983).Google Scholar
19 Magee, C. W. and Harrington, W. L., Appl Phys Lett, 33, 193 (1978).Google Scholar