No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
In many carbon nanotube synthesis methods, catalyst nanoparticles are formed via pyrolysis of a precursor such as ferrocene. Since the diameter of a carbon nanotube is usually determined by the diameter of the catalyst nanoparticle, it is of great importance to control the size of nanoparticles. To do so, it is necessary to identify the key reaction parameters that influence nanoparticle size. For engineering purposes, a simple analytical model offers a convenient first estimation of particle diameter. It also clarifies the dependence of nanoparticle diameter on each reaction parameter and enhances our understanding of the formation mechanism of nanoparticles. This paper presents a simplified model that can calculate the diameter of particles and the model's analytical solutions.