Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:24:40.117Z Has data issue: false hasContentIssue false

Simple Estimation of Nanoparticle Diameter Produced in a Flow Tube Reactor

Published online by Cambridge University Press:  01 February 2011

Kazunori Kuwana
Affiliation:
[email protected], University of Kentucky, Mechanical Engineering, 151 RGAN Bldg., Lexington, KY, 40506-0503, United States, (859)257-6262x523, (859)257-3304
Kozo Saito
Affiliation:
[email protected], University of Kentucky, Department of Mechanical Engineering, United States
Get access

Abstract

In many carbon nanotube synthesis methods, catalyst nanoparticles are formed via pyrolysis of a precursor such as ferrocene. Since the diameter of a carbon nanotube is usually determined by the diameter of the catalyst nanoparticle, it is of great importance to control the size of nanoparticles. To do so, it is necessary to identify the key reaction parameters that influence nanoparticle size. For engineering purposes, a simple analytical model offers a convenient first estimation of particle diameter. It also clarifies the dependence of nanoparticle diameter on each reaction parameter and enhances our understanding of the formation mechanism of nanoparticles. This paper presents a simplified model that can calculate the diameter of particles and the model's analytical solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Chem. Phys Lett. 303, 467 (1999).Google Scholar
2. Kuwana, K., Andrews, R., Grulke, E.A., Saito, K., Mat. Res. Symp. Proc. 706, Z3.12.1 (2002).Google Scholar
3. Endo, H., Kuwana, K., Saito, K., Qian, D., Andrews, R., Grulke, E.A., Chem. Phys. Lett. 387, 307 (2004).Google Scholar
4. Kuwana, K., Endo, H., Saito, K., Qian, D., Andrews, R., Grulke, E.A., Carbon 43, 253 (2005).Google Scholar
5. Eres, G., Kinkhabwala, A.A., Cui, H., Geohegan, D.B., Puretzky, A.A., Lowndes, D.H., J. Phys. Chem. B 109, 16684 (2005).Google Scholar
6. Benson, S.W., Shaw, R., J. Chem. Phys. 47, 4052 (1967).Google Scholar
7. Andrews, R., Jacques, D., Qian, D., Rantell, T., Acc. Chem. Res. 35, 1008 (2002).Google Scholar
8. Kruis, F.E., Kusters, K.A., Pratsinis, S.E., Aerosol Sci. Tech. 19, 514 (1993).Google Scholar
9. Kuwana, K., Saito, K., Carbon 43, 2088 (2005).Google Scholar
10. Zhang, H., Liang, E., Ding, P., Chao, M., Physica B 337, 10 (2003).Google Scholar
11. Singh, C., Shaffer, M.S.P., Windle, A.H., Carbon 41, 359 (2003).Google Scholar
12. Qian, D., PhD Thesis, University of Kentucky, 2001.Google Scholar