Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T08:57:28.083Z Has data issue: false hasContentIssue false

Silicon Thin Film Homoepitaxy by Rapid Thermal Atmospheric-Pressure Chemical Vapor Deposition (RT-APCVD)

Published online by Cambridge University Press:  10 February 2011

Rémi Monna
Affiliation:
Laboratory PHASE (UPR 292 CNRS), 23 rue du Loess, 67037 Strasbourg, FRANCE
Detlef Angermeier
Affiliation:
Laboratory PHASE (UPR 292 CNRS), 23 rue du Loess, 67037 Strasbourg, FRANCE
Abdelilah Slaoui
Affiliation:
Laboratory PHASE (UPR 292 CNRS), 23 rue du Loess, 67037 Strasbourg, FRANCE
Jean Claude Muller
Affiliation:
Laboratory PHASE (UPR 292 CNRS), 23 rue du Loess, 67037 Strasbourg, FRANCE
Get access

Abstract

The homoepitaxy of thin film silicon layers in a horizontal, atmospheric pressure RTCVD reactor is reported. The experiments were conducted in a temperature range from 900°C to 1300°C employing the precursor trichlorosilane (TCS) and the dopant trichloroborine (TCB) diluted in hydrogen. The epilayers were evaluated by Nomarski microscopy, Rutherford backscattering spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the thin film were analyzed by sheet resistance and four point probe characterization methods. We propose that the responsible mechanisms for the observed growth decline at higher precursor concentration in hydrogen are due to the reaction of the gaseous HCI with the silicon surface and the supersaturation of silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sanganeria, M., Öztürk, M., Violette, K., Harris, G., Lee, C. and Maher, D., Appl. Physics. Lett. 66 (10), 1255, (1995).Google Scholar
2. Campe, H.v., Cembolista, B., Ebinger, H., Hoffmann, W., Huth, U., Warzawa, W. and Warta, W., 11 th European Photovoltaic Conference, Montreux, Switzerland, 1066, (1992).Google Scholar
3. Werner, J-H., Bergmann, R. and Brendel, Rolf, The Challenge of Crystalline Thin Film Solar Cells, edited by Helbig, R., Festkoerperprobleme/Advances in Solid State Physics, Vol.24, Vieweg, Braunschweig, 2 (1994).Google Scholar
4. Green, M.A. in Proc.10th European Photovoltaic Solar Energy Conference, Luque, A., Sala, G., Palz, W., Santos, G. Dos and Helm, P. (Kluwer, Dordecht, The Netherlands), 280 (1991).Google Scholar
5. Monna, R., Slaoui, A., Lachiq, A. and Muller, J.C. in Proc 13th European Photovoltaic Solar Energy conference, 1605 (1995).Google Scholar
6. Tatsumi, T., Aizaki, N. and Tsuya, H., Jpn. J. Appl. Phys., 24, L227, (1985).Google Scholar
7. Bergmann, R., Kuehnle, J., Werner, J-H, Oelting, S., Albrecht, M., Strunk, H., Herz, K. and Powalla, M., First WCPEC, Hawaii, 1398, (1994).Google Scholar
8. Hsieh, T. Y., Jung, K., Kwang, D., Lee, S., J. Electrochem. Soc. Vol.138, 1188, (1991).Google Scholar
9. de Boer, W.B., Theunissen, M. and van der Linden, R., Mat. Res. Soc; Symp. Proc., Vol.387, 287, (1995).Google Scholar
10. Hu, Y. Z., Diehl, J., Liu, Q., Zhao, C. Y. and Irene, E. A., Appl. Phys. Lett. 66, 700, (1995).Google Scholar
11. Kuhn, W.S., Qu'Hen, B., Gorochov, O. and Gebhardt, W., The MOVPE of ZnTe, II. Analysis of the Growth Conditions, submitted to Progress in Crystal Growth and Characterization of MaterialsGoogle Scholar
12. Bloem, J. and Giling, L.J., in Current Topics in Materials Science, 1, ed. by Kaldis, E., North-Holland Publishing Comp., (1978).Google Scholar