Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:05:23.070Z Has data issue: false hasContentIssue false

Silicon Single-Electron Pump and Turnstile: Interplay with Crystalline Imperfections

Published online by Cambridge University Press:  01 February 2011

Yukinori Ono
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
Akira Fujiwara
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
Yasuo Takahashi
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, 060-0814, Japan
Hiroshi Inokawa
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
Get access

Abstract

The single-electron device (SED), which has quantum dot(s), or island(s) in its core, enables the control of electron motion on the level of an elementary charge. The single-electron pump and turnstile are members of the SED family and enable single-electron transfer synchronized with the gate clock. They have the potential for extremely low error rates of electron transfer and are thus expected to be building-block devices for future information processing and electrical metrology. We have been pursuing the fabrication of Si-based SEDs using CMOS technology with the help of electron-beam lithography and have recently demonstrated a Si single-electron pump and turnstile. They are composed of one Si quantum dot and two tiny MOS gates and have dramatically increased the operation temperatures, which opens up the possibility of the practical use of the pump and turnstile.

Another path to realizing single-electron transfer, which we will discuss here, might be to use a localized state in the Si bandgap instead of quantum dots. The localized states could in principle be donor/acceptor levels or any other states created by crystalline imperfections. They are free from the problem of the critical size control of the quantum dots, which might lead to a new era of single-electronics in combination with the rapidly developing research field of “dopant engineering”.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kuzmin, L. S. and Likharev, K. K., JETP Letters 45, 495 (1987).Google Scholar
2 Likharev, K. K., IEEE Trans. Magn. 23, 1142 (1987).Google Scholar
3 Fulton, T. A. and Dolan, G. J., Phys. Rev. Lett. 59, 109 (1987).Google Scholar
4 Geerligs, L. J., Anderegg, V. F., Holweg, P. A. M. and Mooij, J. E., Phys. Rev. Lett. 64, 2691 (1990).Google Scholar
5 Pothier, H., Lafarge, P., Orfila, P. F., Urbina, C., Esteve, D. and Devoret, M. H., Physica B 169, 573 (1991).Google Scholar
6 Keller, M. W., Martinis, J. M., Zimmerman, N. M. and Steinbach, A. H., Appl. Phys. Lett. 69, 1804 (1996).Google Scholar
7 Keller, M. W., Eichenberger, A. L., Martinis, J. M. and Zimmerman, N. M., Science 285, 1706 (1999).Google Scholar
8 Kouwenhoven, L. P., Johnson, A. T., Vaart, N. C. van der, Harmans, C. J. P. M. and Foxon, C. T., Phys. Rev. Lett. 67, 1626 (1991).Google Scholar
9 Odintsov, A. A., Appl. Phys. Lett. 58, 2695 (1991).Google Scholar
10 Shilton, J. M., Talyanskii, V. I., Pepper, M., Ritchie, D. A., Frost, J. E. F., Foad, C. J. B., Smith, C. G. and Jones, G. A. C., J. Phys.: Condens. Matter 8, L531 (1996).Google Scholar
11 Fujiwara, A. and Takahashi, Y., Nature 410, 560 (2001).Google Scholar
12 Fujiwara, A. and Takahashi, Y., Jpn. J. Appl. Phys. 41, 1209 (2002).Google Scholar
13 Ono, Y. and Takahashi, Y., Appl. Phys. Lett. 82, 1221 (2003).Google Scholar
14 Ono, Y., Zimmerman, N. M., Yamazaki, K. and Takahashi, Y., Jpn. J. Appl. Phys. 42, L1109 (2003).Google Scholar
15 Takahashi, Y., Nagase, M., Namatsu, H., Kurihara, K., Iwadate, K., Nakajima, Y., Horiguchi, S., Murase, K. and Tabe, M., Electronics Lett. 31, 136 (1995).Google Scholar
16 Takahashi, Y., Namatsu, H., Kurihara, K., Iwadate, K., Nagase, M. and Murase, K., IEEE Trans. Electron Devices 43, 1213 (1996).Google Scholar
17 Ono, Y., Takahashi, Y., Yamazaki, K., Nagase, M., Namatsu, H., Kurihara, K. and Murase, K., IEEE Trans. Electron Devices 47, 147 (2000).Google Scholar
18 Ono, Y., Takahashi, Y., Yamazaki, K., Nagase, M., Namatsu, H., Kurihara, K. and Murase, K., Appl. Phys. Lett. 76, 3121 (2000).Google Scholar
19 Fujiwara, A., Zimmerman, N. M., Ono, Y. and Takahashi, Y., Appl. Phys. Lett. 84, 1323 (2004).Google Scholar
20 Nishiguchi, K., Inokawa, H., Ono, Y., Fujiwara, A. and Takahashi, Y., Electronics Lett. 40, 229 (2004).Google Scholar
21 Nishiguchi, K., Inokawa, H., Ono, Y., Fujiwara, A. and Takahashi, Y., Appl. Phys. Lett. 85, 1277 (2004).Google Scholar
22 Nishiguchi, K., Inokawa, H., Ono, Y., Fujiwara, A. and Takahashi, Y., International Electron Devices Meeting, Technical Digest (Piscataway, NJ: IEEE, 2004), p. 199.Google Scholar
23 Ono, Y., Fujiwara, A., Nishiguchi, K., Inokawa, H. and Takahashi, Y., J. Appl. Phys. 97, 031101 (2005).Google Scholar
24 Keller, M. W., in Recent Advances in Metrology and Fundamental Constants, edited by Quinn, T. J., Leschiutta, S. and Tavella, P. (IOS Press, Amsterdam, 2001), p. 291.Google Scholar
25 Zimmerman, N. M. and Keller, M. W., Meas. Sci. Technol. 14, 1237 (2003).Google Scholar
26 Okada, Y., Phys. Rev. B45, 6352 (1992).Google Scholar
27 Shinada, T., Koyama, H., Hinoshita, C., Imamura, K. and Ohdomari, I., Jpn. J. Appl. Phys. Part 2 41, L287 (2002).Google Scholar
28 Brugler, J. S. and Jespers, P. G. A., IEEE Trans. Electron Devices, 16, 297 (1969).Google Scholar
29 Groeseneken, G., Maes, H. E., Beltran, N. and Keersmaecker, R. F. de, IEEE Trans. Electron Devices, 31, 42 (1984).Google Scholar
30 Groeseneken, G. V., Wolf, I. De, Bellens, R. and Maes, H. E., IEEE Trans. Electron Devices, 43, 940 (1996).Google Scholar
31 Saks, N. S., Groeseneken, G. V. and Wolf, I. De, Appl. Phys. Lett. 68, 1383 (1996).Google Scholar
32 Saks, N. S., Appl. Phys. Lett. 70, 3380 (1997).Google Scholar
33 Militaru, L., Masson, P. and Guegan, G., IEEE Electron Device Lett. 23, 94 (2002).Google Scholar
34 Militaru, L. and Souifi, A., Appl. Phys. Lett. 83, 2456 (2003).Google Scholar
35 Ouisse, T., Cristoloveanu, S., Elewa, T., Haddara, H., Borel, G. and Ioannou, D. E., IEEE Trans. Electron Devices, 38, 1432 (1991).Google Scholar
36 Saks, N. S. and Ancona, M. G., IEEE Electron Device Lett. 11, 339 (1990).Google Scholar
37 Properties of crystalline silicon, edited by Hull, R., (The Institution of Electrical Engineers, London, UK, 1999).Google Scholar
38 Sze, S. M. and Irvin, J. C., Solid State Electronics 11, 599 (1968).Google Scholar
39 , Landolt-Bornstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, edited by Schulz, M. and Weiss, H. (Springer-Verlag, Berlin, 1984), p.494.Google Scholar
40 Takahashi, Y., Ono, Y., Fujiwara, A. and Inokawa, H., J. Phys.: Condens.Matter 14, R995 (2002).Google Scholar