Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:39:59.583Z Has data issue: false hasContentIssue false

Silicon Material Growth for Nuclear Radiation Detectors

Published online by Cambridge University Press:  15 February 2011

P. A. Glasow
Affiliation:
Central Research Laboratories, Siemens, AG, Erlangen and München, F. R. Germany
B. O. Kolbesen
Affiliation:
Central Research Laboratories, Siemens, AG, Erlangen and München, F. R. Germany
Get access

Extract

As a base material for semiconductor devices, silicon is more widely used than any other semiconductor. The physical properties, in particular the bandgap which is significantly larger than that of germanium, makes the material extremely important for electronic devices. The world's total annual production of silicon is at present some 2000 t [1]. Compared with this, the 10 kg/year of silicon that is used for detectors is rather modest. However, since work on semiconductor radiation detectors started 25 years ago, silicon in addition to germanium forms the centre of interest as the basis for production of nuclear radiation spectrometers, mainly as high energy particle detectors, but also as X-ray detectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spenke, E., Heywang, W., Siemens Review, 48/1 (1981) 4.Google Scholar
2. Glasow, P. A., IEEE Trans. on Nucl. Science NS 293 (1982) 1159.CrossRefGoogle Scholar
3. Hall, R. N., Soltys, T. I., IEEE Trans. on Nucl. Science NS 181 (1971) 160.CrossRefGoogle Scholar
4. Hansen, W. L., Nucl. Instr. Methods 94, (1971) 377.CrossRefGoogle Scholar
5. Hadamowsky, H. F., “Halbleiterwerkstoffe”, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1972.Google Scholar
6. Pfann, W. G., “Zone Melting”, John Wiley & Sons, Inc. New York ċ London ċ Sydney, 1966.Google Scholar
7. Keller, W., Mühlbauer, A., “Floating-Zone Silicon”, Marcel Dekker, Inc., 1981 New York and Basel.Google Scholar
8. Yusa, A., Yatsurugi, Y., Takaishi, T., Journ. Electrochem. Soc. 122, (1975) 1700.CrossRefGoogle Scholar
9. Shiraishi, F., Hosol, M., Takami, Y., Ohsawa, IEEE Trans. on Nucl. Science, 291 (1982) 775.CrossRefGoogle Scholar
10. Keller, W., Stutt, H., Z. Feinwerktechnik 75 (1971) 207.Google Scholar
11. Dash, W. C., J. Appl. Phys. 30 (1959) 459 CrossRefGoogle Scholar
11a Dash, W. C., J. Appl. Phys. 31 (1960) 736.CrossRefGoogle Scholar
12. Ziegler, G., Internal Siemensreport 1–108: Munich, 1960 Google Scholar
12a Ziegler, G., Z. Naturforsch., (1961) 219.Google Scholar
13. Keller, W., DBP 2.358.300, filed Nov. 22, 1973, patented July 20, 1978;Google Scholar
13aUSP 3,923,468, filed Nov. 20, 1974, patented Dec. 2, 1975;Google Scholar
13bUSP 3,961,906, filed May 27, 1975, patented June 8, 1976.Google Scholar
14. Herzer, H. and Zauhar, H., USP 4,060,392, filed May 5, 1976, patented Nov. 29, 1977.Google Scholar
15. Kolbesen, B., in “Large Scale Integrated Circuit Technology State of the Art and Prospects” (1982) 33, Editors: Leo Esaki and Giovanni Soncini Martinus Nijhoff Publisher Ten Hague, Netherland.Google Scholar
16. Lark-Horowitz, K., in Proceedings of the Conference at the University Reading, Butterworth, London, 1951.Google Scholar
17. Schnöller, M. S., Haas, W. E., J. Electronic Mater. 5 (1976) 57.Google Scholar
18. Maenhaut, W. and op de Beck, J. P., J. Radioanal. Chem. 5, (1970) 115.CrossRefGoogle Scholar
19. Kim, C., Kim, H., Yusa, A., Miki, S., Husimi, K., Ohkawa, S., Fuchi, Y., IEEE Trans. on Nucl. Science, NS 261, (1979) 292.CrossRefGoogle Scholar
20. de Kock, A. J. R., in Handbook on Semiconductors, ed. Moss, T. S., 3, ed. Keller, S. P., North Holland, Amsterdam (1980) 247.Google Scholar
21. Kolbesen, B. O., Simposio Brasileiro de Microelectronica I. 9 A 11 de Septembro de 1981, Sao Paulo – Brasil.Google Scholar
22. Kolbesen, B. O., Mühlbauer, A., Solid State Electronics, 258 (1982) 759.CrossRefGoogle Scholar
23. Benson, K. E., Lin, W., Martin, E. P., in Semiconductor Silicon, eds. Huff, H. R., Kriegler, R. I. and Takeishi, Y., The Electrochemical Soc., Pennington, N.Y. (1981) 33.Google Scholar
24. Baker, I. A., ref. [18] p. 566.Google Scholar
25. Kolbesen, B. O., Applied Physics Letters, Vol 276, (1975) 353.CrossRefGoogle Scholar
26. Kestler, J., Reiß, B., Czulius, W., Glasow, P., to be published.Google Scholar
27. Guislain, H. J., Schoenmakers, W. K., Delaet, L. H., Nucl. Instr. and Methods 101 (1972) 1.CrossRefGoogle Scholar
28. Frank, W., Festkörperprobleme XXI (Advances in Solid State Physics), Trensch, J. (ed), Vieweg, Braunschweig (1981) 221.CrossRefGoogle Scholar
29. de Kock, A. J. R., Defects in Semiconductors, ed. Narayem, J. and Tan, T. Y., North Holland, Amsterdam (1981) 309.Google Scholar
30. Seeger, A., Föll, H. and Frank, W., Radiation Effects in Semiconductors, Inst. Phys. Conf. Ser. 31, (1977) 12.Google Scholar
31. Chisaka, H., Masuda, M., Nucl. Instr. and Methods 98 (1972) 255.CrossRefGoogle Scholar
32. Mayer, K. R., J. Electrochemical Soc., 120 (1973) 1780.CrossRefGoogle Scholar
33. de Kock, A. J. R., Ferris, S. D., Kimerling, L. C., Leamly, H. J., Appl. Phys. Letters 27 (1975) 313.CrossRefGoogle Scholar
34. Burtscher, J., Scientific Principles of Semicond. Techn., Proc. European Summer School, ed. H. Weiß, (1974) 63.Google Scholar
35. Herrmann, H., Herzers, H. and Sirtl, E., Festkörperprob. XIV (Adv. in Solid State Phys.) Queisser, H. J. ed, Perg./Vieweg, Braunschweig (1975) 279.CrossRefGoogle Scholar
36. de Kock, A. J. R., Philips Res. Rept. Suppl. No. 1 (1973).Google Scholar
37. Bernewitz, L. I., Kolbesen, B. O., Mayer, K. R. and Schuh, G. E., Appl. Phys. Lett. 25, 277 (1974).CrossRefGoogle Scholar
38. Petroff, P. M. and de Kock, A. J. R., J. Cryst. Growth 30, 117 (1975).CrossRefGoogle Scholar
39. Föll, H. and Kolbesen, B. O., Appl. Phys. 8, 319 (1975).CrossRefGoogle Scholar
40. Abe, T., Harada, H. and Chikawa, J., Physica B, (Proc. 12th Int. Conf. Defects in Semiconductors, Amsterdam, 1982) in print.Google Scholar
41. Föll, H., Gösele, U. and Kolbesen, B. O., in Semi. Silic. 1977, ed. by H. R. Huff and E. Sirtl, The Electrochem. Soc., Princeton, N.J. p. 565.Google Scholar
42. de Kock, A. J. R., Stacy, W. T. and van de Wijgert, W. M., Appl. Phys. Lett. 34, 611 (1979).CrossRefGoogle Scholar
43. de Kock, A. J. R. and van de Wijgert, W. M., J. Cryst. Growth 49, 718 (1980).CrossRefGoogle Scholar
44. Petroff, P. M. and de Kock, A. J. R., J. Cryst. Growth 35, 4 (1976).CrossRefGoogle Scholar
45. Föll, H., Gösele, U. and Kolbesen, B. O., J. Crystal Growth 40, 90 (1977).CrossRefGoogle Scholar
46. Chikawa, J. and Shirai, S., J. Crystal Growth 39, 328 (1977).CrossRefGoogle Scholar
47. van Vechten, J. A., Phys. Rev. B-17, 3197 (1978).CrossRefGoogle Scholar
48. Chikawa, J. and Shirai, S., Jap. J. Appl. Phys. 5. 153 (1979).CrossRefGoogle Scholar
49. Föll, H., Gösele, U. and Kolbesen, B. O., J. Cryst. Growth 52, 907 (1981).CrossRefGoogle Scholar
50. Hu, S. M., J. Vacuum, Sci, Techn. 14, 17 (1977).CrossRefGoogle Scholar
51. Antoniadis, D. A., J. Electrochem. Soc. 129, 1093 (1982).CrossRefGoogle Scholar
52. Keller, W. and Mühlbauer, A., Inst. Phys. Conf. Ser. 23, 538 (1975).Google Scholar
53. Roksnoer, P. J., Bartels, W. J. and Bulle, C. W., J. Cryst. Growth 35, (1975) 245.CrossRefGoogle Scholar
54. Fong, A., Walton, J. T., Haller, E. E., Sommer, H. A., Guldberg, J., Nucl. Instr. and Methods 199, (1982) 623.CrossRefGoogle Scholar
55. Guislain, H. J., Schoenmakers, W. K., Delaet, L. H., Nucl. Instr. and Methods 101 (1972) 1.CrossRefGoogle Scholar
56. Guislain, H. J. and Delaet, L. H., IEEE Trans. on Nucl. Science, NS 19/1 (1972) 323.CrossRefGoogle Scholar
57. Voronkov, V. V., J. of Cryst. Growth, Bd 59 (1982) 625643.CrossRefGoogle Scholar