Article contents
Silicon Carbide Die Attach Scheme for 500°C Operation
Published online by Cambridge University Press: 15 March 2011
Abstract
Single crystal silicon carbide (SiC) has such excellent physical, chemical, and electronic properties that SiC based semiconductor electronics can operate at temperatures in excess of 600°C well beyond the high temperature limit for Si based semiconductor devices. SiC semiconductor devices have been demonstrated to be operable at temperatures as high as 600°C, but only in a probe-station environment partially because suitable packaging technology for high temperature (500°C and beyond) devices is still in development. One of the core technologies necessary for high temperature electronic packaging is semiconductor die-attach with low and stable electrical resistance. This paper discusses a low resistance die-attach method and the results of testing carried out at both room temperature and 500°C in air. A 1 mm2 SiC Schottky diode die was attached to aluminum nitride (AlN) and 96% pure alumina ceramic substrates using precious metal based thick-film material. The attached test die using this scheme survived both electronically and mechanically performance and stability tests at 500°C in oxidizing environment of air for 550 hours. The upper limit of electrical resistance of the die-attach interface estimated by forward I-V curves of an attached diode before and during heat treatment indicated stable and low attach-resistance at both room-temperature and 500°C over the entire 550 hours test period. The future durability tests are also discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
REFERENCES
- 14
- Cited by