Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:02:20.905Z Has data issue: false hasContentIssue false

Silica and Hybrid Silica Gels Revisited: New Insight by Solid State Nuclear Magnetic Resonance

Published online by Cambridge University Press:  01 February 2011

Christian Bonhomme
Affiliation:
Florence Babonneau Laboratoire de Chimie de la Matière Condensée, UMR CNRS 7574 Université P. et M. Curie Paris 6 4, place Jussieu 75252, Paris Cedex 05, France
Lydie Camus
Affiliation:
Florence Babonneau Laboratoire de Chimie de la Matière Condensée, UMR CNRS 7574 Université P. et M. Curie Paris 6 4, place Jussieu 75252, Paris Cedex 05, France
Get access

Abstract

The “old” 1H→29Si CP MAS (Cross Polarization Magic Angle Spinning) experiment is revisited in the frame of silica hybrid gels and silsesquioxanes. It is proved that the analysis of the CP curves can lead to erroneous interpretation in terms of quantification. We show that this results from false assumptions concerning the dynamical CP parameters THSi (cross relaxation time constant) and TH (1H relaxation time in the rotating frame). In other words, at least one parameter must be measured independently, in order to constrain the fits of the CP curves. Moreover, we demonstrate that the well-known (and universally used…) “spin bath” assumption is not always valid in the frame of 1H→29Si CP MAS NMR. This point is clearly demonstrated on model silsesquioxanes exhibiting short Si-H bonds. In this case, the transfer of magnetization (called coherent transfer) presents clearly oscillations, which can lead to the precise measurement of Si-H distances by solid state NMR! Curiously, the coherent transfer of magnetization is also demonstrated for weakly coupled spin systems, encountered in the silsesquioxane (SiO1.5CH3)8 or T units gels. In this case, a numerical simulation of the CP curves gives a deep insight in the chemical environment of the 29Si sites in terms of Si-H distances and local molecular reorientations. For weakly coupled systems, 1H-1H spin diffusion must be suppressed, in order to reveal the coherent character of the transfer: the quenching of spin diffusion is demonstrated by using a modified version of the CP MAS experiment. We introduce here the Lee-Goldburg CP MAS experiment (CPLG MAS) for that purpose. The “off resonance” 1H irradiation (at the magic angle) ensures the strong suppression of the 1H-1H homonuclear dipolar interaction and therefore the efficient quenching of spin diffusion during the CP transfer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hartmann, S. R., and Hahn, E. L., Phys. Rev. 128, 2042 (1962).Google Scholar
2. Pines, A., Gibby, M. G., and Waugh, J. S., J. Chem. Phys., 59, 569 (1973).Google Scholar
3. Maciel, G. E., and Sindorf, D. W., J. Am. Chem. Soc., 102, 7607 (1980).Google Scholar
4. Sindorf, D. W., and Maciel, G. E., J. Am. Chem. Soc., 103, 4263 (1981).Google Scholar
5. Sindorf, D. W., and Maciel, G. E., J. Phys. Chem., 86, 5208 (1982).Google Scholar
6. Sindorf, D. W., and Maciel, G. E., J. Am. Chem. Soc., 105, 1487 (1983).Google Scholar
7. Schmidt-Rohr, K., and Spiess, H. W., Multidimensional Solid State NMR and Polymers, Academic Press, New-York, 1994.Google Scholar
8. Klur, I., Jacquinot, J. F., Brunet, F., Charpentier, T., Virlet, J., Schneider, C., and Tekely, P., J. Phys. Chem. B, 104, 10162 (2000).Google Scholar
9. Brinker, C. J., and Scherer, G. W., Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1989.Google Scholar
10. Müller, L., Kumar, A., Baumann, T., and Ernst, R. R., Phys. Rev. Lett., 32, 1402 (1974).Google Scholar
11. Bak, M., Rasmussen, J. T., and Nielsen, N. C., J. Magn. Reson. A, 147, 296 (2000).Google Scholar
12. Sangill, R., Rastrup-Andersen, N., Bildsoe, H., Jakobsen, H. J., and Nielsen, N. C., J. Magn. Reson. A, 107, 67 (1994).Google Scholar
13. Van Rossum, B. J., De Groot, C. P., Ladizhansky, V., Vega, S. and De Groot, H. J. M., J. Am. Chem. Soc. 122, 3465 (2000).Google Scholar
14. Terao, T., Miura, H. and Saika, A., J. Chem. Phys. 75, 1573 (1981).Google Scholar