Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T06:56:20.861Z Has data issue: false hasContentIssue false

Signatures of Non-integer 5f Occupancy in Pu Systems: Magnetic Properties and Photoelectron Spectroscopy Studies

Published online by Cambridge University Press:  01 February 2011

Ladislav Havela
Affiliation:
[email protected], Charles University, Department of Condensed Matter Physics, Ke Karlovu 5, Prague 2, CZ-12116, Czech Republic, +420221911351, +420221911351
Alexander Shick
Affiliation:
[email protected], Institute of Physics, Academy of Sciences of the Czech Republic, Prague 8, CZ-18221, Czech Republic
Thomas Gouder
Affiliation:
[email protected], European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, Karlsruhe 1, D-76125, Germany
Franck Wastin
Affiliation:
[email protected], European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, Karlsruhe 1, D-76125, Germany
Jean Rebizant
Affiliation:
[email protected], European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, Karlsruhe 1, D-76125, Germany
Get access

Abstract

Very diverse Pu compounds exhibit strikingly universal features in their valence-band photoemission (PES) spectra. The conjecture that such features represent the 5f5 final state multiplet has been corroborated by LDA+Hubbard I calculations, meaning that the ground state has a mixed 5f5-5f6 character. Later on, more elaborated DMFT techniques (one crossing approximation, QMC) led to similar conclusions, providing quantitative explanation of such intermeate-valent situation in more details. Analogies in PES spectra of δ-Pu and other Pu systems suggest that the situation envisaged for δ-Pu is relevant for a large group of Pu compounds. Here we show that the around mean field LDA+U in conjunction with the Hubbard I approximation, which describes well the non-magnetic ground state for δ-Pu, captures in reality properties of a large group of Pu (as well as e.g. Am) compounds, reproducing correctly the onset of magnetism and size of magnetic moments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pourovskii, L.V., Kotliar, G., Katsnelson, M.I., Lichtenstein, A.I., Phys. Rev. B 75, 235107 (2007).10.1103/PhysRevB.75.235107Google Scholar
2 Zhu, Jian-Xin, McMahan, A.K., Jones, M.D., Durakiewicz, T., Joyce, J.J., Wills, J.M., Albers, R.C., Phys. Rev. B 76, 245118 (2007).Google Scholar
3 Söderlind, P., Phys. Rev. B 77, 085101 (2008).Google Scholar
4 Shick, A.B., Drchal, V., Havela, L., Europhys. Lett. 69, 588 (2005).Google Scholar
5 Shick, A., Kolorenc, J., Havela, L., Drchal, V., Gouder, T., EPL 77, 17003 (2007).Google Scholar
6 Tobin, J.G., Söderlind, P. P., Landa, A., Moore, K.T., Schwartz, A.J., Chung, J.B.W., Wall, M.A., Haire, R.G., Kutepov, A.L., J. Phys.:Cond. Matter. 20, 125204 (2008).Google Scholar
7 Gouder, T., Wastin, F., Rebizant, J., and Havela, L., Phys. Rev. Lett. 84, 3378 (2000).Google Scholar
8 Durakiewicz, T., Joyce, J.J., Lander, G.H., Olson, C.G., Butterfield, M.T., Guziewicz, E., Arko, A.J., Morales, L., Rebizant, J., Mattenberger, K., Vogt, O., Phys. Rev. B 70, 205103 (2004).Google Scholar
9 Havela, L., Gouder, T., Wastin, F., Rebizant, J., Phys. Rev. B 65, 235118 (2002).Google Scholar
10 Terry, J., Schulze, R.K., Farr, J.D., Zocco, T., Heinzelman, K., Rotenberg, E., Shuh, D.K., Laan, G. Van der, Arena, D.A., Tobin, J.G., Surface Science 499, L141 (2002).Google Scholar
11 Wills, J.M., Eriksson, O., Delin, A., Anderson, P.H., Joyce, J.J., Durakiewicz, T., Butterfield, M.T., Arko, A.J., Moore, D.P., Morales, L.A., Electr, J.. Spectr. Rel. Phenomena 135, (2004) 163.Google Scholar
12 Gouder, T., Havela, L., Shick, A.B., Huber, F., Wastin, F., Rebizant, J., J. Phys.:Cond. Matter. 19, 476201 (2007).Google Scholar
13 Gerken, F. and Schmidt-May, J., J. Phys. F: Met. Phys. 13, 1571 (1983).Google Scholar
14 Javorský, P., Havela, L., Wastin, F., Colineau, E., Bouëxière, D., Phys. Rev. Lett. 96, 156404 (2006).10.1103/PhysRevLett.96.156404Google Scholar
15 Joyce, J.J., Wills, J.M., Durakiewicz, T., Butterfield, M.T.,Guziewicz, E., Graham, K.S., Sarrao, J.L., Arko, A.J., Bauer, E.D., Moore, D.P., Morales, L.A. and Eriksson, O., Proc. Res. Soc. Symp. Proc. 893, 0893–JJ03 (2006).Google Scholar
16 Svane, A., Solid State Commun. 140, 364 (2006).Google Scholar
17 Green, J.L., Arnold, G.P., Leary, J.A., Nereson, N.G., J. Nucl. Mater. 34, 281 (1970).10.1016/0022-3115(70)90194-7Google Scholar
18 Gouder, T., Seibert, A., Rebizant, J., Huber, F., Havela, L., Mater. Res. Soc. Symp. Proc. 986, 0986–OO01 (2007).Google Scholar
19 Aldred, A.T., Cinader, G., Lam, D.J., Weber, L.W., Phys. Rev. B 19, 300 (1979).Google Scholar
20 Baclet, N., Dormeval, M., Havela, L., Fournier, J.M., Valot, C., Wastin, F., Gouder, T., Colineau, E., Walker, C.T., Bremier, S., Apostolidis, C., Lander, G.H., Phys.Rev.B 75, 035101 (2007).Google Scholar
21 Wachter, P., Marabelli, F., Bucher, B., Phys. Rev. B 43, 11136 (1991).Google Scholar
22 Khomskii, D.I. and Kocharjan, A.N., Solid State Commun. 18, 985 (1976).Google Scholar