Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T08:20:25.206Z Has data issue: false hasContentIssue false

SiGe/Si-Bipolar and Quantum Well Transistors, Results and Prospects

Published online by Cambridge University Press:  25 February 2011

ULF KÖNIG*
Affiliation:
Daimler-Benz AG, Research Center Ulm, Wilhelm-Runge Str. 11, D-7900 Ulm, Germany
Get access

Abstract

The quality of SiGe/Si heterodevices recently could be improved by depositing on a SiGe buffer with a Ge grading. In house MBE grown structures reached 1.5 K mobilities of 173000 cm2/Vs. Also at room temperature (RT) the mobility is up to 4 times higher than in bulk Si or SiGe. HBTs in the discussed material system can exceed performances of conventional Si-homobipolar transistors, already with relaxed design rules. I briefly review on mesa - like SiGe HBTs with high fmax and fT around 50 GHz, owing to low base sheet resistances <1Kω□. In DC-operation high gains >400 or 13 000 at RT or 77K were obtained, n - and p - channel Si, SiGe and Ge MODFETs will be presented in more detail, n- MODFETs exhibit high transconductances above 300 mS/mm at RT and almost 1000 mS/mm at 77K. Different effects will be discussed, e.g. the influence of the gate to channel distance and effects of rapid thermal activation. Si/Ge heterosystems offer exclusive properties, e.g. the same mobility in a Si - 2DEG and a Ge - 2DHG. Complementary MODFETs (CMOD) can be envisaged. Furtheron the Si/Ge system allows the monolithic integration of heterodevices with high complexity Si - ICs (heterointegration).

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kasper, E., and Schaffler, F. in Semiconductors and Semimetals 33, 223 (1991)Google Scholar
[2] Presting, H., Kibbel, H. et. al., Semicon. Sci Tec. 7, 1127 (1992)Google Scholar
[3] Patton, G.L., Iyer, S.S., Delage, S.L., Tiwari, S. et.al., IEEE -EDL 9, 165 (1988)Google Scholar
[4] Tatsumi, T., Hirayama, H., and Aiziki, N., Appl. Phys. Lett., 52, 895 (1988)Google Scholar
[5] Temkin, H., Bean, J., Antreasyan, A. et.al., Appl. Phys. Lett., 52, 1089 (1988)Google Scholar
[6] Kamins, T.I. et. al. IEEE-EDL 10, 503 (1989)Google Scholar
[7] Fischer, S.E. et. al., IEDM 89, 890 (1989)Google Scholar
[8] Patton, G.L. et. al., IEEE-EDL 11, 171 (1990)Google Scholar
[9] Burghartz, J.N. et. al., IEDM 90, 297 (1990)Google Scholar
[10] Norozny, P. and Köhlhoff, D., unpublished (1990)Google Scholar
[11] Schreiber, H.U-, DRC, 135 (1991)Google Scholar
[12] Cressler, J.D., IEDM 91, 861 (1991)Google Scholar
[13] Comfort, J.H. et. al., IEDM 91, 857 (1991)Google Scholar
[14] Schreiber, H.U., and Bosch, B.G., Electron Lett., 28, 485 (1992)Google Scholar
[15] Gruhle, A., Kibbel, H., Konig, U., Erben, U., and Kasper, E. IEEE-EDL 13, 206 (1992)Google Scholar
[16] Gruhle, A., Kibbel, H., and Kasper, E., DRC 92 (1992)Google Scholar
[17] Sato, F., Hashinoto, T., Tatsumi, T., Kitahata, H., and Tashito, T., IEDM 92, (1992)Google Scholar
[18] Harame, D. et. al., IEDM 92, (1992)Google Scholar
[19] Gruhle, A., AVS-Meeting, Chicago (1992), to be publ. in J. Vac. Sci. Tec.Google Scholar
[20] Chen, J., Gao, G.B., and Morkoc, H., DRC 92, 147 (1991)Google Scholar
[21] Marksteiner, S., Felder, A., and Meister, T.F., Microel. Engineering 19, 535 (1992)Google Scholar
[22] Dämbkes, H., Herzog, H.J., Jorke, H., Kibbel, H., and Kasper, E., IEDM 85, 768, (1985)Google Scholar
[23] König, U., and Schäffler, F., Electron. Lett., 27, 1405 (1991)Google Scholar
[24] Schäffler, F., Mat. Res. Soc. Symp. Proa, 220, 433 (1991)Google Scholar
[25] Ismail, K., Meyerson, B. S., Risthon, S., Chu, J., et. al., IEEE-EDL 13, 229 (1992)Google Scholar
[26] König, U., Boers, A.J., Schäffler, F., and Kasper, E., Electron Lett. 28, 160 (1992)Google Scholar
[27] König, U., and Schäffler, F. unpublishedGoogle Scholar
[28] Pearsall, T.P., Bean, J.C., People, R. et al., Pro. 1 Int. Symp. Si-MBE, 400 (1985)Google Scholar
[29] Pearshall, T.P., and Bean, J.C., IEEE-EDL 7, 308 (1986)Google Scholar
[30] König, U., and Schäffler, F., submitted to IEEE EDLGoogle Scholar
[31] König, U., and Schäkffler, F., submitted Electron. Lett.Google Scholar
[32] Murakami, F., Nakayawa, K., Nishida, A., and Miyao, M., IEEE-EDL 12, 71 (1991)Google Scholar
[33] Nayak, D.K., Woo, J.C.S., Park, J.S., Wang, K. L., et al., IEEE-EDL 12, 154 (1991)Google Scholar
[34] Fountain, G.G. et. al., DRC 91, 139 (1991)Google Scholar
[35] Kesan, V.P. et. al., Mat. Res. Soc. Symp. Proc., 220, 471 (1991)Google Scholar
[36] Kesan, V.P. et. al., IEDM 91 (1991)Google Scholar
[37] De La. Houssaye, P.R. et. al., IEEE-EDL 9, 148 (1988)Google Scholar
[38] Luryi, S. in High Speed Sem. Dev., J. Wiley + S., New York, (1990)Google Scholar
[39] Cappy, A. et. al., IEEE Trans.-El. Dev., ED 27, 2158 (1980)Google Scholar
[40] Kasper, E. in Advances in Sol. State Phys. 27, 265 (1987)Google Scholar
[41] König, U., Kibbel, H. and Kasper, E., EMC (1991)Google Scholar
[42] King, C.A et. al., IEEE-EDL 10, 52 (1989)Google Scholar
[43] Narozny, P. et. al., Proc. ESSDERC 477 (1990)Google Scholar
[44] Prinz, E.J., Garone, P.M., Schwartz, P.V., Xiao, X. et al., IEEE-EDL 12, 42 1991 Google Scholar
[45] Gruhle, A., Kibbel, H., and Kasper, E., Microelectronic Engineering 19, 435 (1992)Google Scholar
[46] Jorke, H., and Kibbel, H., J. Electroch. Soc. 133, 774 (1986)Google Scholar
[47] Jorke, H., Surf. Sci. 193, 569 (1988)Google Scholar
[48] Jorke, H., and Herzog, H.J., J. Appl. Phys. 60, 1735 (1986)Google Scholar
[49] Schreiber, H.U., and Bosch, B.G., IEDM 89, 643 (1989)Google Scholar
[50] Kasper, E., Kibbel, H. and König, U., Mat. Res. Soc. Symp. Proc. 220, 451 (1991)Google Scholar
[51] Fitzgerald, E.A. et. al., Appl. Phys. Lett. 59, 811 (1991)Google Scholar
[52] Schäffler, F., Többen, D., Herzog, H.J., et. al., Semic. Sci. Tec. 7, 260 (1992)Google Scholar
[53] König, U. in Advances in Sol. State Phys. 32, 199 (1992)Google Scholar
[54] Schälffler, F., and König, U., to be published in Springer Proc., (1992)Google Scholar
[55] Schäfler, F., and Jorke, H., Appl. Phys. Lett. 58, 397 (1991)Google Scholar
[56] König, U., Boers, A. J., and Schäffler, F., accepted for IEEE-EDLGoogle Scholar
[57] Das, M.B., Kopp, W., and Morkoc, H., IEEE-EDL 5, 446 (1984)Google Scholar
[58] Dickmann, J., Heedt, C.H., and Dämbkes, H., IEEE Transc. El. Dev., 36, 2315 (1989)Google Scholar
[59] Ismail, K., to be published in Springer Proc. (1992)Google Scholar
[60] Schäffler, F., unpublishedGoogle Scholar
[61] Ohuchi, N. et al., IEDM 83, 3–3 (1983)Google Scholar
[62] Konaka, S. et. al., Ext. Abstr. 16th Int. Conf. Sol. State Dev. Mat. 209 (1984)Google Scholar
[63] Burghartz, J.N. et. al., Microelctron. Engineering 15, 11 (1991)Google Scholar
[64] Kasper, E., König, U., and Wörner, K., patent DE 3828809 (1988)Google Scholar
[65] Kamins, T.I., Wang, A, patent US 444586 (1990)Google Scholar
[66] Herzog, H.J., and Kasper, E., J. Electroch. Soc. 132, 2227 (1985)Google Scholar
[67] König, U., Schäffler, F., and Behr, W., German patentGoogle Scholar
[68] König, U., Kuisl, M., Schäffler, F., Fischer, G., and Kiss, T., IEEE-EDL 11, 218 (1990)Google Scholar
[69] König, U., Schäffler, F., Fischer, G. and Kiss, T., unpublishedGoogle Scholar