Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:44:37.807Z Has data issue: false hasContentIssue false

Si(100) Surface Cleaning Using Sr and SrO

Published online by Cambridge University Press:  01 February 2011

Xiaoming Hu
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
Yong Liang
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
D.C. Jordan
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
Brad Craigo
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
Ravi Droopad
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
Z. Yu
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
Alex Demkov
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
John L. Edwards Jr
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
Karen Moore
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
William J. Ooms
Affiliation:
Physical Science Research Laboratory, Motorola Labs, Motorola Inc. 7700 S. River Parkway, Tempe, AZ 85284
Get access

Abstract

A method for removing SiO2 and producing an ordered Si(100) surface using Sr or SrO has been developed. In this technique, a few monolayers of Sr or SrO are deposited onto the as received Si(100) wafer in a ultrahigh vacuum molecular beam epitaxy system. The substrate is then heated to ∼800°C for about 5 minutes, the SiO2 is removed to leave behind a Sr terminated Si(100) surface. This Sr terminated Si(100) surface is well suited for the growth of crystalline high k dielectric SrTiO3 films. Temperature programmed desorption measurements were carried out to understand the mechanism of removing SiO2 from Si(100) using Sr or SrO. The species we observed coming off the surface during the temperature cycle was mainly SiO and O, no significant amount of Sr containing species was observed. We conclude that the SiO2 removal is due to the catalyst reaction SiO2 + Sr (or SrO) → SiO (g) + O + Sr (or SrO). The reaction happened through several intermediate steps. The reaction SiO2 + Si → 2SiO (g) at the SiO2/Si interface is limited and the pit formation is suppressed. The main roles that Sr or SrO play during the oxide removal process are catalysts promoting SiO formation and preventing further etching and the formation of pits in the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kizilyalli, I., Huang, R., and Roy, P., IEEE Electron Device Lett. 423, 423 (1998).Google Scholar
2. Park, D., King, Y. C., Liu, Q., King, T. J., Hu, C., Kalnitsky, A., Tay, S. P., and Cheng, C. C., IEEE Electron Device Lett. 441, 441 (1998).Google Scholar
3. He, B., Ma, T., Campbell, S., and Gladfelter, W., Tech. Dig. Int. Electron Devices Meet. 1038 (1998).Google Scholar
4. Yokota, K., Yamada, T., Miyashita, F., Hirai, K., Takano, H., and Kuma-gai, M., Thin Solid Films 109, 109 (1998).Google Scholar
5. Manchanda, L. et al, Tech. Dig. Int. Electron Devices Meet. 605 (1998).Google Scholar
6. Morita, M., Fukumoto, H., Imura, T., and Osaka, Y., J. Appl. Phys. 2407, 2407 (1985).Google Scholar
7. Fukumoto, H., Imura, T., and Osaka, Y., Jpn. J. Applm. Phys., Part 2 27, L1404 (1988).Google Scholar
8. McKee, R., Walker, F., and Chisholm, M., Phys. Rev. Lett. 3014, 3014 (1998).Google Scholar
9. Yu, Z., Ramdani, J., Curless, J. A., Overgaad, C. D., Finder, J. M., Droopad, R., Eisenbeiser, K. W., Hallmark, J. A., Ooms, W. J., and Kanshik, V. S., J. Vac. Sci. Technol. B 2139, 2139 (2000).Google Scholar
10. Tokumitu, E., Itani, K., Moon, B., and Ishiwara, H., Mater. Res. Soc. Symp. Proc. 415, 415 (1995).Google Scholar
11. Sanchez, F., Varela, M., Queralt, X., Aguiar, R., and Morenza, J. L., Appl. Phys. Lett. 2228, 2228 (1992).Google Scholar
12.DCA Instruments Oy, Telekatu 14, FIN-20362 Turku, Finland.Google Scholar
13. Chalamala, B. R., Uebelhoer, D., and Reuss, R. H., Rev. Sci. Instrum. 320, 320 (2000).Google Scholar
14. Liang, Y., Gan, S., and Engelhard, M., Appl. Phys. Lett. 3591, 3591 (2001).Google Scholar
15. Tromp, R., Rubloff, G. W., Balk, P., LeGoues, F. K., and Loenen, J. van, Phys. Rev. Lett. 2332, 2332 (1985).Google Scholar
16. Liehr, M., Lewis, J. E., and Rubloff, G. W., J. Vac. Sci. Technol. A 1559, 1559 (1987).Google Scholar
17. Sun, Y. K., Bonser, D. J., and Engel, T., Phys. Rev. B 14309, 14309 (1991).Google Scholar
18. Johnson, K. E. and Engel, T., Phys. Rev. Lett. 339, 339 (1992).Google Scholar
19. Wei, Y., Wallace, R. M., and Seabaugh, A. C., Appl. Phys. Lett. 1270, 1270 (1996).Google Scholar
20. Wilk, G. D., Wei, Y., Edwards, H., and Wallace, R. M., Appl. Phys. Lett. 2288, 2288 (1997).Google Scholar
21. Howorth, J.R. et al., Appl. Phys. Lett. 316, 316 (1972).Google Scholar
22. Martinelli, R.U., J. Appl. Phys. 2566, 2566 (1973).Google Scholar
23. Hu, Xiaoming, Liang, Y., Wei, Yi, Edwards, J.L. Jr, Droopad, R., Moore, K., and Ooms, W.J., MRS Spring Meeting, San Francisco, 2002.Google Scholar