Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:45:13.182Z Has data issue: false hasContentIssue false

Si Single-Electron SOI-MOSFETs: Interplay with Individual Dopants and Photons

Published online by Cambridge University Press:  01 February 2011

Michiharu Tabe
Affiliation:
[email protected], United States
Zainal Arif Burhanudin
Affiliation:
[email protected], Shizuoka University, Research Institute of Electronics, Hamamatsu, Japan
Ratno Nuryadi
Affiliation:
[email protected], Shizuoka University, Research Institute of Electronics, Hamamatsu, Japan
Daniel Moraru
Affiliation:
[email protected], Shizuoka University, Research Institute of Electronics, Hamamatsu, Japan
Maciej Ligowski
Affiliation:
[email protected], Shizuoka University, Research Institute of Electronics, Hamamatsu, Japan
Ryszard Jablonski
Affiliation:
[email protected], Wasaw Institute of Technology, Warsaw, Poland
Takeshi Mizuno
Affiliation:
[email protected], Shizuoka University, Research Institute of Electronics, Hamamatsu, Japan
Get access

Abstract

We have demonstrated that Si single-electron or single-hole SOI-MOSFETs with the multi-dots channel have attractive new functions such as photon detection and single-electron transfer. Multi-dots formed by selective-oxidation-induced patterning of the thin SOI layer have been used in the experiments of photon detection, while, most recently, we have utilized smaller dots consisting of individual dopant potentials in single electron transfer devices. Furthermore, in order to directly observe spatial landscape of single charges in the channel region, we have developed Low Temperature-Kelvin Probe Force Microscopy and succeeded in detecting single-dopant potential in the channel region. In this paper, photon detection by these devices will be primarily described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nuryadi, R., Ishikawa, Y. and Tabe, M., Phys. Rev. B 73, 045310 (2006).Google Scholar
2. Moraru, D., Ono, Y., Inokawa, H. and Tabe, M., Phys. Rev. B, Vol.76, no. 7, 075332 2007).Google Scholar
3. Ligowski, M., Moraru, D., Anwar, M., Mizuno, T., Jablonski, R. and Tabe, M., Appl. Phys. Lett. Vol. 93, No. 14, 142101 2008).Google Scholar
4. Komiyama, S., Astafiev, O., Antonov, V., Kutsuwa, T. and Hirai, H., Nature (London) 403, 405 (2000).Google Scholar
5. Shields, A., O'Sullivan, M. P., Farrer, I., Ritchie, D. A., Hogg, R. A., Leadbeater, M. L., Norman, C. E., and Pepper, M., Appl. Phys. Lett. 76, 3673 (2000).Google Scholar
6. Kosaka, H., Rao, D. S., Robinson, H. D., Bandaru, P., Sakamoto, T., and Yablonovitch, E., Phys. Rev. B 65, 201307(R) (2002).Google Scholar
7. Fujiwara, A., Takahashi, Y., and Murase, K., Phys. Rev. Lett., vol. 78, pp. 15321535 (1997).Google Scholar
8. Nuryadi, R., Ikeda, H., Ishikawa, Y., and Tabe, M., IEEE Trans. Nanotechnol. 2, 231 (2003).Google Scholar
9. Nuryadi, R., Ikeda, H., Ishikawa, Y., and Tabe, M., Appl. Phys. Lett. 86, 133106 (2005).Google Scholar
10. Averin, D. V. and Likharev, K. K., Single charge tunneling, edited by Grabert, H. and Devoret, M (Plenum, New York, 1992).Google Scholar
11. Burhanudin, Z. A., Nuryadi, R. and Tabe, M., Appl. Phys. Lett. Vol. 91, No. 4, 042103 2007).Google Scholar
12. Nishizawa, M., Bolotov, L., and Kanayama, T., Appl. Phys. Lett. 90, 122118 (2007).Google Scholar
13. Nonnenmacher, M., O'Boyle, M. P., and Wickramasinghe, H. K., Appl. Phys. Lett. 58, 2921 (1991).Google Scholar