Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:36:05.290Z Has data issue: false hasContentIssue false

Shock Wave Response of Materials at Different Length Scales

Published online by Cambridge University Press:  10 February 2011

Y.M. Gupta*
Affiliation:
Institute for Shock Physics and Department of Physics, Washington State University, Pullman, WA 99164-2814, [email protected]
Get access

Abstract

After a brief introduction to shock wave propagation in solids, recent experimental developments to understand the real time response of shocked materials at various length scales are outlined. Results from two representative studies are summarized: xray diffraction to examine elastic-plastic deformation in shocked LiF crystals; and picosecond optical absorption to examine structural transformation in shocked CdS crystals. Issues related to examining material processes at different length scales in shock wave experiments are discussed briefly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schmidt, S.C., Dandekar, D.P., and Forbes, J.W., Shock Compression of Condensed Matter - 1997 (American Institute of Physics, New York, 1998).Google Scholar
2. Gupta, Y.M., in Encyclopedia of Physics, edited by Besancon, R.M. (Van Nostrand Reinhold Co., New York, 1985) pp. 11091115.Google Scholar
3. Gupta, Y.M., in Shock Waves in Condensed Matter - 1991, edited by Schmidt, S.C., Dick, R.D., Forbes, J.W., and Tasker, D.G. (North-Holland, Amsterdam, 1992) pp. 1526.Google Scholar
4. Johnson, J.N. and Barker, L.M., J. Appl. Phys. 40, 4321 (1969).Google Scholar
5. Holian, B.L. and Lomdahl, P.S., Science 20, 2085 (1998).Google Scholar
6. Brenner, D.W., Robertson, D.H., Elert, M.L., and White, C.T., Phys. Rev. Lett. 70, 2174 (1993).Google Scholar
7. Knudson, M.D., Ph.D. Thesis, Washington State University, 1998.Google Scholar
8. Rigg, P.A. (Ph.D Thesis work in progress).Google Scholar
9. Aidun, J.B. and Gupta, Y.M., J. Appl. Phys. 69, 6998 (1991).Google Scholar
10. Feng, R., Gupta, Y.M., and Wong, M.K.W., J. Appl. Phys. 82, 2845 (1997).Google Scholar
11. Pangilinan, G.I. and Gupta, Y.M., J. Appl. Phys. 81, 6662 (1997).Google Scholar
12. Duvall, G.E., in Physics of High Energy Density (Academic Press, New York, 1971).Google Scholar
13. Asay, J.R., et. al., J. Appl. Phys. 43, 2220 (1972).Google Scholar
14. Gupta, Y.M., Duval, G.E., and Fowles, G.R., J. Appl. Phys. 46, 532 (1975).Google Scholar
15. Gupta, Y.M., J. Appl. Phys. 46, 3395 (1975).Google Scholar
16. Gupta, Y.M., J. Appl. Phys. 48, 5067 (1977).Google Scholar
17. Vorthman, J.E. and Duvall, G.E., J. Appl. Phys. 53, 3607 (1982).Google Scholar
18. Tunison, K.S. and Gupta, Y.M., Appl. Phys. Lett. 48, 1351 (1986).Google Scholar
19. Smith, C.S., Trans. AIME 212, 574 (1958).Google Scholar
20. Gupta, Y.M., Zimmerman, K., Zaretsky, E., Rigg, P., Bellamy, P., Savage, D. (unpublished).Google Scholar
21. Rigg, P.A. and Gupta, Y.M., Appl. Phys. Lett. 73, 1655 (1998).Google Scholar
22. Edwards, A.L., et. al., J. Phys. Chem. Solids 11, 140 (1959).Google Scholar
23. Samara, G.A. and Giardini, A.A., Phys. Rev. 140, 388 (1965).Google Scholar
24. Cervantes, P., et. al., Phys. Rev. B 54, 17585 (1996).Google Scholar
25. Tang, Z.P. and Gupta, Y.M., J. Appl. Phys. 64, 1827 (1988).Google Scholar
26. Tang, Z.P. and Gupta, Y.M., J. Appl. Phys. 81, 7203 (1997).Google Scholar
27. Sharma, S.M. and Gupta, Y.M., Phys. Rev. B 58, 5964 (1998).Google Scholar
28. Knudson, M.D., Zimmerman, K.A., and Gupta, Y.M., Rev. Sci. Instr. (accepted for publication).Google Scholar
29. Knudson, M.D. and Gupta, Y.M., Phys. Rev. Lett. 81, 2938 (1998).Google Scholar
30. Knudson, M.D., Gupta, Y.M., and Kunz, A.B., Phys. Rev. B. (accepted for publication).Google Scholar