Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T17:49:39.939Z Has data issue: false hasContentIssue false

Sharp Silicon Nano-Needles Based on Boron Etch-Stop in TMAH Solutions

Published online by Cambridge University Press:  28 January 2011

Sheping Yan
Affiliation:
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Yang Xu
Affiliation:
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Junyi Yang
Affiliation:
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Huiquan Wang
Affiliation:
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Zhonghe Jin
Affiliation:
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Yuelin Wang
Affiliation:
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Get access

Abstract

Operations on biological living cells and molecular devices have driven research towards implementation of high-aspect-ratio nano-needles. However, current nano-needle fabrication is complicated to control the sizes and angles. In this work, we develop a simple method to fabricate repeatable and integrated circuit (IC)-compatible sharp silicon nano-needles based on boron etch-stop in tetramethyl ammonium hydroxide (TMAH) solutions, and the needle angles can be accurately controlled. An analytical model is proposed to efficiently predict the needle sizes and explain the etching evolution of silicon nano-needles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Obataya, I., Nakamura, C., Han, S., Nakamura, N., and Miyake, J., Nano Lett. 5, 27 (2005).Google Scholar
[2] Yum, K., Wang, N., and Yu, M. F., Nanoscale 2, 363 (2009).Google Scholar
[3] Han, S. W., Nakamura, C., Obataya, I., Nakamura, N., and Miyake, J., Biosensors & Bioelectronics 20, 2120 (2005).Google Scholar
[4] Jouzi, M., Kerby, M. B., Tripathi, A., and Xu, J., Langmuir 24, 10786 (2008).Google Scholar
[5] Han, S. W., Nakamura, C., Kotobuki, N., Obataya, I., Ohgushi, H., Nagamune, T., and Miyake, J., Nanomedicine: NBM 4, 215 (2008).Google Scholar
[6] Goryu, A., Ikedo, A., Ishida, M., and Kawano, T., Nanotechnology 21, 125302 (2010).Google Scholar
[7] Hsu, C. H., Lo, H. C., Chen, C. F., Wu, C. T., Hwang, J. S., Das, D., Tsai, J., Chen, L. C., and Chen, K. H., Nano Lett. 4, 471 (2004).Google Scholar
[8] Rao, P. M. and Zheng, X. L., Nano Lett. 9, 3001 (2009).Google Scholar
[9] Tabata, O., Asahi, R., Funabashi, H., Shimaoka, K., and Sugiyama, S., Sens. Actuators A 34, 51 (1992).10.1016/0924-4247(92)80139-TGoogle Scholar
[10] Sato, K., Shikida, M., Yamashiro, T., Asaumi, K., Iriye, Y., and Yamamoto, M., Sens. Actuators A 73, 131 (1999).10.1016/S0924-4247(98)00271-4Google Scholar
[11] Steinsland, E., Nese, M., Hanneborg, A., Bernstein, R. W., Sandmo, H., and Kittilsland, G., Sens. Actuators A 54, 728 (1996).10.1016/S0924-4247(97)80047-7Google Scholar
[12] Tatic-Lucic, S., Zhang, W. Y., and Navneet, N., Sens. Actuators A 123-24, 640 (2005).10.1016/j.sna.2005.01.034Google Scholar
[13] Acero, M. C., Esteve, J., Burrer, C., and Gotz, A., Sens. Actuators A 46, 22 (1995).Google Scholar
[14] Wind, Rikard A., Hines, Melissa A., Surface Science 460, 21 (2000).Google Scholar
[15] van Veenendaal, E., Sato, K., Shikida, M., Nijdam, A. J., and van Suchtelen, J., Sens. Actuators A 93, 232 (2001).Google Scholar