No CrossRef data available.
Article contents
Shape deformation of colloidal titania nanoparticles by means of ion irradiation
Published online by Cambridge University Press: 01 February 2011
Abstract
Spherical submicrometer-sized titanium dioxide (TiO2 or titania) particles were prepared by the sol-gel method from hydrolysis and condensation of titanium butoxide Ti(OC4H9)4 using ammonia as a catalyst in ethanol/acetonitrile and annealing in air at 100°C. Subsequently, they were deposited onto silicon substrates, in order to form a monolayer of TiO2 particles. Then these samples were irradiated at room temperature with Si2+ ions at 4, 6 and 8 MeV, with fluences in the 2×1014-2×1015 Si/cm2 range, under an angle of 45° with respect to the sample surface. The titania particles were characterized by scanning electron microscopy to determine their size and shape before and after the ion irradiation. After the Si irradiation the spherical silica particles turned into ellipsoidal particles, as a result of the increase of the particle dimension perpendicular to the ion beam and the decrease in the direction parallel to the ion beam. This deformation effect increases monotonically with the ion fluence, and depends on the electronic energy loss of the impinging ion.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008