Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T13:33:46.205Z Has data issue: false hasContentIssue false

Shallow Junctions for Sub-100 Nm Cmos Technology

Published online by Cambridge University Press:  21 March 2011

Veerle Meyssen
Affiliation:
Philips Research Laboratories, Eindhoven, THE NETHERLANDS
Peter Stolk
Affiliation:
Philips Research Leuven, Kapeldreef 75, B-3001 Leuven, BELGIUM
Jeroen van Zijl
Affiliation:
Philips Research Laboratories, Eindhoven, THE NETHERLANDS
Jurgen van Berkum
Affiliation:
Philips CFT; Eindhoven, THE NETHERLANDS
Willem van de Wijgert
Affiliation:
Philips CFT; Eindhoven, THE NETHERLANDS
Richard Lindsay
Affiliation:
IMEC; Kapeldreef 75, B-3001 Leuven, BELGIUM
Charles Dachs
Affiliation:
Philips Research Leuven, Kapeldreef 75, B-3001 Leuven, BELGIUM
Giovanni Mannino
Affiliation:
CNR-IMETEM, Catania, ITALY
Nick Cowern
Affiliation:
Philips Research Laboratories, Eindhoven, THE NETHERLANDS Philips Research Leuven, Kapeldreef 75, B-3001 Leuven, BELGIUM
Get access

Abstract

This paper studies the use of ion implantation and rapid thermal annealing for the fabrication of shallow junctions in sub-100 nm CMOS technology. Spike annealing recipes were optimized on the basis of delta-doping diffusion experiments and shallow junction characteristics. In addition, using GeF2 pre-amorphization implants in combination with low-energy BF2 and spike annealing, p-type junctions depths of 30 nm were obtained with sheet resistances as low as 390 Ω/sq. The combined finetuning of implantation and annealing conditions is expected to enable junction scaling into the 70-nm CMOS technology node.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dachs, C.J.J., Verheijen, M.A., Kaiser, M., Stolk, P.A., and Ponomarev, Y.V., Proc. ESSDERC-2000, pp. 360363 (2000).Google Scholar
[2] Mentink, S.A.M. et al., 12th European Congress on Electron Microscopy (2000).Google Scholar
[3] Stolk, P.A. Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).Google Scholar
[4] Michel, A.E., Rausch, W., Ronsheim, P.A. and Kastl, R.H., Appl. Phys. Lett. 50, 416 (1987).Google Scholar
[5] Agarwal, A., Fiory, A.T., Gossmann, H.-J., Rafferty, C.S. and Frisella, P., Mat. Sci. Semi. Proc. 1, 237 (1998).Google Scholar
[6] Saito, S., Shishiguchi, S., Hamada, K. and Hayashi, T., Mat. Chem. and Phys. 54, 49 (1998).Google Scholar
[7] Mehrotra, M., Hu, J.C., Jain, A., Shiau, W., Hattangady, S., Reddy, V., Aur, S., and Rodder, M., Tech. Digest IEDM, 419 (1999).Google Scholar
[8] Downey, D.F., Osburn, C.M, Marcus, S.D., Solid State Tech., 71 (Dec. 1997).Google Scholar
[9] Al-Bayati, A., Tandon, S., Mayur, A., Foad, M., Wagner, D., Murto, R., Sing, D., Ferguson, C., Larson, L., Proceedings of the Ion Implantation Technology conference (2000).Google Scholar
[10] Huang, T.H., Kinoshita, H., and Kwong, D.L., Appl. Phys. Lett. 65, 1829 (1994).Google Scholar
[11] Mannino, G., Stolk, P.A., Cowern, N.E.B., Boer, W.B. de, Dirks, A.G., Roozeboom, F., Berkum, J.G.M. van, Woerlee, P.H., and Toan, N.N., Appl. Phys. Lett. 78, 889 (2001).Google Scholar
[12] Stolk, P.A. et al., Mat. Res. Soc. Symp. Proc. Vol. 610 (2000).Google Scholar
[13] Robertson, L.S., Gable, K.A. and co-workers.Google Scholar