Published online by Cambridge University Press: 15 February 2011
The effect of the laser energy density used to deposit Bi onto amorphous aluminum oxide (a-Al2O3) on the growth of Bi nanocrystals has been investigated using transmission electron microscopy of cross section samples. The laser energy density on the Bi target was varied by one order of magnitude (0.4 to 5 J cm-2). Across the range of energy densities, in addition to the Bi nanocrystals nucleated on the a-Al2O3 surface, a dark and apparently continuous layer appears below the nanocrystals. Energy dispersive X-ray analysis on the layer have shown it is Bi rich. The separation from the Bi layer to the bottom of the nanocrystals on top is consistent with the implantation range of Bi species in a-Al2O3. As the laser energy density increases, the implantation range has been measured to increase. The early stages of the Bi growth have been analyzed in order to determine how the Bi implanted layer develops.