Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:47:07.357Z Has data issue: false hasContentIssue false

SET and RESET Kinetics of SrTiO3-based Resistive Memory Devices

Published online by Cambridge University Press:  13 May 2015

Karsten Fleck
Affiliation:
Institut für Werkstoffe der Elektrotechnik II, RWTH Aachen University, Germany JARA – Fundamentals of Future Information Technology
Ulrich Böttger
Affiliation:
Institut für Werkstoffe der Elektrotechnik II, RWTH Aachen University, Germany JARA – Fundamentals of Future Information Technology
Rainer Waser
Affiliation:
Institut für Werkstoffe der Elektrotechnik II, RWTH Aachen University, Germany JARA – Fundamentals of Future Information Technology Forschungszentrum Jülich GmbH, Jülich, Germany
Stephan Menzel
Affiliation:
JARA – Fundamentals of Future Information Technology Forschungszentrum Jülich GmbH, Jülich, Germany
Get access

Abstract

In this paper we present a study of the switching kinetics of SrTiO3 based resistive switching memory devices. A pulse scheme is used to cycle the cells between the high resistive state (HRS) and the low resistive state (LRS) thereby monitoring the transient currents for a precise analysis of the SET and RESET transitions. By variation of the width and amplitude of the applied pulses the switching kinetics are studied between 10-8 and 104 s. Taking the pre-switching currents into account, a power dependency of the SET is found that emphasizes the importance of local Joule heating for the nonlinearity of the switching kinetics.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Waser, R., Dittmann, R., Staikov, G., and Szot, K.. Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Advanced Materials, 21, 26322663 (2009).Google Scholar
Lee, M., Lee, C., Lee, D., Lee, S., Chang, M., Hur, J., Kim, Y., Kim, C., Seo, D., Seo, S., Chung, U., Yoo, I., and Kim, K.. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-xx/TaO2-xbilayer structures. Nature Materials, 10, 625630 (2011).Google ScholarPubMed
Yang, J. J., Miao, F., Pickett, M. D., Ohlberg, D. A. A., Stewart, D.R., Lau, C. N., and Williams, R. S.. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology, 20, 215201 (2009).Google Scholar
Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., and Williams, R. S.. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 3, 429 (2008).Google ScholarPubMed
Schroeder, H., Zhirnov, V. V., Cavin, R. K., and Waser, R.. Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells. Journal of Applied Physics, 107, 054517/18 (2010).Google Scholar
Nishi, Y., Menzel, S., Fleck, K., Boettger, U., and Waser, R.. Origin of the SET Kinetics of the Resistive Switching in Tantalum Oxide Thin Films. IEEE Electron Device Letters, 35, 259261 (2014).Google Scholar
Menzel, S., Waters, M., Marchewka, A., Böttger, U., Dittmann, R., and Waser, R.. Origin of the Ultra-nonlinear Switching Kinetics in Oxide-Based Resistive Switches. Advanced Functional Materials, 21, 44874492 (2011).Google Scholar
Fleck, K., Böttger, U., Waser, R., and Menzel, S.. Interrelation of Sweep and Pulse Analysis of the SET Process in SrTiO3 Resistive Switching Memories. IEEE Electron Device Letters, 35, 924926 (2014).Google Scholar
Ielmini, D., Nardi, F., and Balatti, S.. Evidence for Voltage-Driven Set/Reset Processes. IEEE Transactions on Electron Devices, 59, 20492055 (2012).Google Scholar
Huang, P., Wang, Y., Li, H., Gao, B., Chen, B., Zhang, F., Zeng, L., Du, G., Kang, J., and Liu, X.. Analysis of the Voltage-time Dilemma of Metal Oxide-based RRAM and Solution Exploration of High Speed and Low Voltage AC Switching. IEEE Transactions on Nanotechnology, PP (2014).CrossRefGoogle Scholar