Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:33:09.664Z Has data issue: false hasContentIssue false

Semiconductor Resonant Tunneling Device Physics and Applications

Published online by Cambridge University Press:  28 February 2011

Mark A. Reed
Affiliation:
Central Research Laboratories, Texas Instruments Incorporated, P. O. Box 655936, M/S 154, Dallas, TX 75265, U.S.A
Alan C. Seabaugh
Affiliation:
Central Research Laboratories, Texas Instruments Incorporated, P. O. Box 655936, M/S 154, Dallas, TX 75265, U.S.A
Yung-Chung Kao
Affiliation:
Central Research Laboratories, Texas Instruments Incorporated, P. O. Box 655936, M/S 154, Dallas, TX 75265, U.S.A
John N. Randall
Affiliation:
Central Research Laboratories, Texas Instruments Incorporated, P. O. Box 655936, M/S 154, Dallas, TX 75265, U.S.A
William R. Frensley
Affiliation:
Central Research Laboratories, Texas Instruments Incorporated, P. O. Box 655936, M/S 154, Dallas, TX 75265, U.S.A
James H. Luscombe
Affiliation:
Central Research Laboratories, Texas Instruments Incorporated, P. O. Box 655936, M/S 154, Dallas, TX 75265, U.S.A
Get access

Abstract

A discussion of resonant tunneling physics in both diode and transistor heterojunction structures is presented. It is evident the In(GaAI)As/InP system is significantly superior for this application. We also present results on resonant tunneling in lower dimensional systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chang, L. L., Esaki, L., and Tsu, R., Appl. Phys. Lett. 24, 593 (1974).Google Scholar
[2] Sollner, T. G. L. C., Goodhue, W. D., Tannenwald, P. E., Parker, C. D., and Peck, D. D., Appl. Phys. Lett. 43, 588 (1983).Google Scholar
[3] Huang, C. I., Paulus, M. J., Bozada, C. A., Dudley, S. C., Evans, K. R., Stutz, C. E., Jones, R. L., and Cheney, M. E., Appl. Phys. Lett. 51, 121 (1987).Google Scholar
[4] Potter, R. C. and Lakhani, A. A., Appl. Phys. Lett. 52, 1349 (1988).Google Scholar
[5] Reed, M. A., Heinrich, H., Bauer, G., and Kuchar, F., Physics and Technology of ubicron Structures (Springer-Verlag, New York, 1988); pg. 64.Google Scholar
[6] Broekaert, T. P. E. and Fonstad, C. G., IEDM Technical Digest 1989, pg. 559.Google Scholar
[7] Broekaert, T. P. E., Lee, W., and Fonstad, C. G., Appl. Phys. Lett., 53, 1545 (1988).Google Scholar
[8] Inata, T., Muto, S., Nakata, Y., Sasa, S., Fujii, T., and Hiyamizu, S., Jpn. J. Appl. Phys. 26, LI332 (1987).Google Scholar
[9] Reed, M. A. and Lee, J. W., Appl. Phys. Lett. 50, 845 (1987).Google Scholar
[10] The original suggestion appears to be Mead, C. A., Proc. IRE 48, 359 (1960).Google Scholar
[11] The series combination approach is typified by Bonnefoi, A. R., McGill, T.C., and Burnham, R.D., EDL-6, 636 (1985); and T. K. Woodward, T.C. McGill and R.D. Burnham, Appl. Phys. Lett. 50, 451 (1987).Google Scholar
[12] The unipolar approach utilizing a RTD in the emitter is reported by Yokoyama, N., Imamura, K., Muto, S., Hiyamizu, S., and Nishi, H., Jap. Jour. Appl. Phys. 24, L853 (1985).Google Scholar
[13] Bipolar approaches can be found in Capasso, F. and Kiehl, R. A., Jour. Appl. Phys. 58, 1366 (1985); F. Capasso, S. Sen, A. C. Gossard, A. L. Hutchinson, and J. H. English, EDL-7, 573 (1986); and T. Futatsugi, Y. Yamaguchi, K. Imamura, S. Muto, N. Yokoyama, and A. Shibatomi, Jap. Jour. Appl. Phys. 26, L131 (1987).Google Scholar
[14] Variants on a series combination, like Capasso, F., Sen, S., Cho, A. Y., and Sivco, D. L., Appl. Phys. Lett. 53, 1056 (1988), have been reported.Google Scholar
[15] Schulman, J. N. and Waldner, M., J. Appl. Phys. 63, 2859 (1988).Google Scholar
[16] Reed, M. A., Frensley, W. R., Matyi, R. J., Randall, J. N., and Seabaugh, A. C., Appl. Phys. Lett. 54, 1034 (1989); and A. C. Seabaugh, W. R. Frensley, J. N. Randall, M. A. Reed, D. L. Farrington, and R. J. Matyi, IEEE Trans. Electron Dev. 36, 2329 (1989).Google Scholar
[17] Sunderland, D. A. and Dapkus, D., IEEE Trans. Electron Dev. ED-34, 367 (1987).Google Scholar
[18] Wolak, E. L., Lear, K. L., Pitner, P. M., Hellman, E. S. Park, B G, Weil, T., Harris, J. S. Jr., and Thomas, D., Appl. Phys. Lett. 53, 201 (1988); and E. L. Wolak, Ph. D. Thesis, Stanford University, 1989.Google Scholar
[19] Entry to the literature can be found in; Heinrich, H., Bauer, G., and Kuchar, F., Physics and Technology of Submicron Structures (Springer-Verlag, New York, 1988); and M. A. Reed and W. P. Kirk, eds., Nanostructure Physics and Fabrication (Academic Press, San Diego, 1989).Google Scholar
[20] Hansen, W., Smith, T. P. III , Lee, K. Y., Hong, J. M., and Knoedler, C. M., Appl. Phys. Lett. 56, 168 (1990); and T. P. Smith III, K. Y. Lee, C. M. Knoedler, J. M. Hong, and D. P. Kern, Phys. Rev. B38, 2172 (1988)Google Scholar
[21] Wees, B. J. Van, Kouwenhoven, L. P., Harmans, C. J. P. M., Williamson, J. G., Timmering, C. E. Broekaart, M. E. I., Foxon, C. T., and Harris, J. J., Phys. Rev. Lett. 62, 2523 (1989).Google Scholar
[22] Reed, M. A., Randall, J. N., Aggarwal, R. J., Matyi, R. J., Moore, T. M., and Wetsel, A. E., Phys. Rev. Lett. 60, 535 (1988).Google Scholar
[23] Reed, M. A., Randall, J. N., Luscombe, J. H., Frensley, W. R., Aggarwal, R. J., Matyi, R. J., Moore, T. M., and Wetsel, A. E., Festkérperprobleme: Advances in Solid State Physics Vol. 29, ed. Röβler, U. (Vieweg, Braunschweig/Wiesbaden 1989), pg. 267.Google Scholar
[24] Nakagawa, T., Fujita, T., Matsumoto, Y., Kojima, T., and Ohta, K., Appl. Phys. Lett. 51, 445 (1987).Google Scholar