Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:01:20.478Z Has data issue: false hasContentIssue false

Semiconductor Nanostructures defined by self-organizing Polymers

Published online by Cambridge University Press:  01 February 2011

Michael Haupt
Affiliation:
Abt. Halbleiterphysik (Dept. of Semiconductor)
Stephan Miller
Affiliation:
Abt. Halbleiterphysik (Dept. of Semiconductor)
Andreas Ladenburger
Affiliation:
Abt. Halbleiterphysik (Dept. of Semiconductor)
Rolf Sauer
Affiliation:
Abt. Halbleiterphysik (Dept. of Semiconductor)
Klaus Thonke
Affiliation:
Abt. Halbleiterphysik (Dept. of Semiconductor)
Silke Riethmueller
Affiliation:
Abt. Makromolekulare Chemie III (Dept. of Organic and Macromolecular Chemistry III)
Martin Moeller
Affiliation:
Abt. Makromolekulare Chemie III (Dept. of Organic and Macromolecular Chemistry III)
Florian Banhart
Affiliation:
Zentrale Einrichtung Elektronenmikroskopie (Dept. of Electron Microscopy)University Ulm, Albert-Einstein-Allee 45, 89069 Ulm, Germany
Get access

Abstract

In the near future it will be more and more important to produce real nanometer-sized structures for semiconductor devices (e.g., quantum dot lasers) but also for nano-biomechanical applications like the so-called total analysis system implemented on one chip.

We describe here a technique to create nanometer-sized structures in semiconductors and metals by the use of self-assembling diblock copolymers as nano-lithographic masks. Semiconductor quantum structures with very high aspect ratio of 1:10 were fabricated from III-V semiconductor heterostructures by anisotropic dry etching. In a first step, so-called diblock copolymer micelles were generated in a toluene solution. These micelles were loaded by a noblemetal salt. With a “Langmuir Blodgett” technique we can decorate complete wafers with a monolayer of highly ordered micelles, covering almost the complete surface. After treatment in a hydrogen plasma all of the organic components are removed and only crystalline metal clusters of ~12 nm size remain. This metal cluster mask can be used directly in a highly anisotropic chlorine dry etching process to etch cylinders in GaAs and its In and Al alloys. It is also possible to etch through a quantum well layer underneath the surface in order to produce quantum dots.

By evaporating metals and applying a wet chemical image reversal process, we can invert the etched structure and generate a gauzy gold film with nano-holes inside. It is thinkable to use this porous gold film as a nano-filter in upcoming nano-biotechnology applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bestwick, T., Dawson, M., Kean, A., and Duggan, G., Appl. Phys. Lett. 66, 1382 (1995)Google Scholar
2. Bimberg, D., Grundmann, M and Ledentsov, N., Quantum Dot Heterostructures, Wiley-VCH Verlag, Chichester (1998).Google Scholar
3. Leonard, D., Pond, K., Petroff, P., Phys. Rev. B 50, 11687 (1994).Google Scholar
4. Ryou, J.H., Dupuis, R. D., Mathes, D.T., Hull, R., Reddy, C. V., and Narayanamurti, V., Appl. Phys. Lett. 78, 3526 (2001).Google Scholar
5. Haupt, M., Miller, S., Bitzer, K., Thonke, K., Sauer, R., Spatz, J. P., Mössmer, S., Hartmann, C., and Möller, M., Phys. Stat. Sol. (b) 224, 867 (2001).Google Scholar
6. Li, R., Dapkus, P., Thompson, M., Jeong, W., Harrison, C., Chaikin, P., Register, R., and Adamson, D., Appl. Phys. Lett. 76, 1689 (2000).Google Scholar
7. Manski, P., Harrison, C., Chaikin, P., Register, R., and Yao, N., Appl. Phys. Lett. 68, 2586 (1996).Google Scholar
8. Harrison, C., Park, M., Chaikin, P., Register, R., and Adamson, D., ACS Symposium Series, Micro and Nanopatterning Polymers 706, 2 (1997).Google Scholar
9. Spatz, J., Herzog, T., Möβmer, S., Ziemann, P., and Möller, M., ACS Symposium Series, Micro and Nanopatterning Polymers 706, 12 (1997).Google Scholar
10. Clausen, E., Craighead, H., Worlock, J., Harbison, J., Schiavone, L., Florez, L., and Gaag, B. Van der, Appl. Phys. Lett. 55, 1427 (1989).Google Scholar
11. Borzenko, T., Koval, Y., Kulik, L., and Larionov, A., Appl. Phys. Lett. 70, 2297 (1997).Google Scholar
12. Schwoebel, P.R., and Brodie, I., J. Vac. Sci. Technol. B 13(4), 1391 (1995).Google Scholar