Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T08:00:28.209Z Has data issue: false hasContentIssue false

Semiconductor Nanocrystals: Exciton Quantum Mechanics, Single Nanocrsytal Luminescence, and Metastable High Pressure Phases

Published online by Cambridge University Press:  15 February 2011

M. Nirmal
Affiliation:
Department of Chemistry, Columbia University, New York, N.Y 10027
L. E. Brus
Affiliation:
Department of Chemistry, Columbia University, New York, N.Y 10027
Get access

Abstract

We review three areas where significant progress has recently occurred in our understanding of semiconductor nanocrystals. The first two involve luminescence properties of single and ensembles of Cadmium Selenide (CdSe) nanocrystallites (Quantum Dots) between 10 and 50 Å in radius. The size, magnetic field, and temporal dependence of emission from ensembles of nanocrystallites at cryogenic temperatures uncovers the fundamental mechanism of radiative recombination in these nanocrystals. Effective mass models that take into account the electron-hole exchange interaction can quantitatively account for observed luminescence Stokes shifts. Furthermore, the magnetic field dependence of luminescence lifetimes and longitudinal-optical (LO) phonon ratios demonstrate that the exciton ground state in these nanocrystals is optically passive (“dark exciton”) with spin projection ±2. Picosecond time resolved measurements probe exciton relaxation into this level. Recent results on the spectroscopy of single CdSe nanocrystals at room temperature are also presented. Remarkably, emission from a single CdSe nanocrystal under C.W illumination is observed to turn on and off discretely (fluorescence intermittency) on a ∼0.5s timescale. The excitation intensity dependence, and the influence of a passivating high band gap shell of Zinc Sulfide (ZnS) encapsulating the CdSe nanocrystal on the on/off times, suggest that this phenomenon is caused by photoionization. Finally, the third area originates in diamond anvil studies of the solid-solid phase transitions of nanocrystals under pressure. These studies show that a single nucleation event occurs per nanocrystal, and that as a consequence the nanocrystals change shape. The kinetic activation barrier increases with increasing size. Under suitable conditions nanocrystals in dense, six-coordinate high pressure phases may be metastable at STP.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murray, C.B., Norris, D.J. and Bawendi, M.G., J. Am. Chem. Soc. 11, 8706 (1993).Google Scholar
2.Bawendi, M.G., Carroll, P.J., Wilson, W.L. and Brus, L.E., J. Chem. Phys. 96, 946 (1992).Google Scholar
3.Nirmal, M., Murray, C.B. and Bawendi, M.G., Phys. Rev. B 50, 2293 (1994).Google Scholar
4.Henry, C.H. and Nassau, H., Phys. Rev. B 1, 1628 (1970).Google Scholar
5.O'Neil, M., Marohn, J., and Maclendon, G., J. Phys. Chem. 94, 4356 (1990);Google Scholar
Hasselbrath, A., Eychmuller, A. and Weller, H., Chem. Phys. Lett. 203, 271 (1993).Google Scholar
6.Nirmal, M., Norris, D.J., Kuno, M., Bawendi, M.G., Efros, A.I.L. and Rosen, M., Phys. Rev. Lett. 75, 3728 (1995).Google Scholar
7.Efros, Al.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J. and Bawendi, M.G., Phys. Rev. B 54, 4843 (1996).Google Scholar
8.Calcott, P.D.J., et al. , J. Phys. Condens. Matter 5, L91 (1993).Google Scholar
9.Nirmal, M., To be Published.Google Scholar
10.Macklin, J.J., Trautman, J.K., Harris, T.D. and Brus, L.E., Science 272, 255 (1996).Google Scholar
11.Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D. and Brus, L., Nature 383, 802 (1996).Google Scholar
12.Ambrose, W.P., Basche, T. and Moerner, W.E., J. Chem. Phys. 95, 7150 (1991).Google Scholar
13.Bernard, J., Fleury, L., Talon, H. and Orrit, M., J. Chem. Phys. 98, 850 (1993).Google Scholar
14.Chepic, D.I. et al. , J. Lumin. 47, 113 (1990).Google Scholar
15.Rossignol, P., Ricard, D., Lukasik, J. and Flytzanis, C., J. Opt. Soc. Am. B 4, 5 (1987).Google Scholar
16.Hines, M.A. and Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996);Google Scholar
Kortan, A.R. et al. , J. Am. Chem. Soc. 112, 1327 (1990).Google Scholar
17.Norris, D.J. and Bawendi, M.G., Phys. Rev. B 53, 16338 (1996).Google Scholar
18.Tolbert, S. and Alivisatos, A.P., Annu. Rev. Phys. Chem. 46, 595 (1995).Google Scholar
19.Tolbert, S., Herhold, A., Brus, L. and Alivisatos, A.P., Phys. Rev. Lett. 76, 4384 (1996).Google Scholar
20.Brus, L., Harkless, J. and Stillinger, F., J. Am. Chem. Soc. 118, 4834 (1996).Google Scholar
21.Chen, C. and Alivisatos, A.P., Private Communication.Google Scholar
22.Volldstadt, H., Ito, E., Akaishi, M., Akimoto, S. and Fukunaga, O., Proc. Jpn. Acad. Ser. B66, 7 (1990);Google Scholar
Xie, Y, Qian, Y., Wang, W., Zhang, S. and Zhang, Y., Science 272, 1926 (1996).Google Scholar