Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:26:23.385Z Has data issue: false hasContentIssue false

The Semi-Conductor ⇌ Metal Transition in Tin

Published online by Cambridge University Press:  21 February 2011

R.W. Smith
Affiliation:
Queen's University, Kingston Ontario, Canada K7L 3N6
F. Vnuk
Affiliation:
Queen's University, Kingston Ontario, Canada K7L 3N6
Get access

Abstract

It is well known that silicon, germanium and other diamond-cubic semi-conductors may transform to a metal when a pressure of the order of 100 kilobars is applied. This renders the detailed study of the transformation experimentally difficult. Grey tin transforms to the more common (white) metal allotrope at room temperature and pressure and so provides a means of studying readily this type of transformation. This paper describes the influence of pressure on the transformation characteristics of tin and dilute tin-germanium alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baublitz, M. Jr. and Ruoff, A.C., J. Appl. Phys., 53, 5669 (1982).Google Scholar
2. Ruoff, A.L. and Baublitz, M.A. Jr., in Schilling, J.S. and Shelton, R.N. (eds.), Physics of Solids Under High Pressure, North Holland Publ. Co., 1981, p. 81 Google Scholar
3. Smith, R.W. and Vnuk, F., monograph entitled The Grey Tin White Tin Transformation, to be published.Google Scholar
4. Raynor, G.V. and Smith, R.W., Proc. Roy. Soc. (London), A, 244, 101 (1958).Google Scholar
5. Wolfson, R.G., Fine, M.E. and Ewald, A.W., J. Appl. Physics, 31, 1973 (1960).Google Scholar
6. Vnuk, F., J. Crystal Growth, 48, 486, (1980).Google Scholar
7. Ewald, A.W., J. Appl. Phys., 22, 1436, (1954).Google Scholar
8. Kaufman, L., in Paul, W. and Warschauer, D.M. (eds.), Solids Under Pressure, McGraw-Hill Book Co. Inc., N.Y., 1963, p. 307.Google Scholar
9. Stull, D.R. and Sinke, G.C., Thermodynamic Properties of the Elements, American Chemical Society, Washington, 1956.Google Scholar
10. Barrett, C.S., Massalski, T.B., Structure of Metals, McGraw-Hill, New York, (1966).Google Scholar
11. Hume-Rothery, W., Atomic Theory for Students of Metallurgy, London 1955, p. 122.Google Scholar
12. O'Neill, H., Hardness of Metals and Alloys, London 1967, p. 193.Google Scholar
13. Our measurements on Sn - 1.0 % Ge alloys.Google Scholar
14. Gulmyayev, P.V. and Petrov, A.V., Soviet Physics, Solid State, 1 (1959), 311.Google Scholar
15. Gschneider, K.A. in Seitz, F. and Turnbull, D. (eds.), Solid State Physics, Vol. 16 (1964) 275.Google Scholar
16. Enz, H., Thesis, ETH, Zurich 1951, quoted by Busch, G.A. and Kern, R. in Seitz, F. and Twinbull, D. (eds.), Solid State Physics, Vol. 11, New York, 1960, pp. 140.Google Scholar
17. Nicolaev, I.N., Marin, V.P., Panyushkin, V.N. and Pavlywkov, L.S., Soviet Physics, Solid State, 14, (8), 1972, 2022.Google Scholar
18. Hanneman, R.E., Banus, M.D. and Gatos, H.C., J. Phys. Chem. Solids, 25, 293 (1964).Google Scholar
19. Van Vechten, J.A., Phys. Rev. B, 7, (1973) 1479.Google Scholar
20. Babb, S.E. Jr., J. Chem. Phys. 37 (1962), 922.Google Scholar