Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T12:31:58.146Z Has data issue: false hasContentIssue false

Semi reflective biopolymer layers for the detection of biomass hydrolytic enzymatic activities

Published online by Cambridge University Press:  18 July 2011

C. Cerclier
Affiliation:
UR1268 Biopolymères, Interactions et Assemblages, 44300 Nantes, France
C. Moreau
Affiliation:
UR1268 Biopolymères, Interactions et Assemblages, 44300 Nantes, France
A. Guyomard-Lack
Affiliation:
UR1268 Biopolymères, Interactions et Assemblages, 44300 Nantes, France
E. Bonnin
Affiliation:
UR1268 Biopolymères, Interactions et Assemblages, 44300 Nantes, France
H. Bizot
Affiliation:
UR1268 Biopolymères, Interactions et Assemblages, 44300 Nantes, France
B. Cathala
Affiliation:
UR1268 Biopolymères, Interactions et Assemblages, 44300 Nantes, France
Get access

Abstract

Structural colors were obtained by the deposition of plant cell walls biopolymers films on reflective support. Multilayered xyloglucan(XG)/cellulose nanocrystals(CN) thin films were obtained by spin-assisted layer-by-layer assembly while arabinoxylan (AX) thin films were elaborated via the spin-coating of AX/melamine formaldehyde resin followed by a cross-linking step. The effects of aqueous solutions on the stability of the structural colors were evaluated. The films were subsequently used to detect cellulase and xylanase activities by the change in the colors due to the film degradation. This enzymatic assay method appeared to be about 150 more sensitive that a standard method. Moreover due its simplicity, the method could be used to detect other biomass-hydrolyzing enzymes and more generally for other heterocatalytic degradations of solid polymer layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schauer, C. L., Chen, M.-S., Chatterley, M., Eisemann, K., Welsh, E. R., Price, R. R., Schoen, P. E. and Ligler, F. S., Thin Solid Films 434(1–2), 250257 (2003).10.1016/S0040-6090(03)00055-5Google Scholar
2. Cranston, E. D. and Gray, D. G., Biomacromolecules 9(7), 25222530 (2006).10.1021/bm0602886Google Scholar
3. Decher, G., Science 277 (5330), 12321237 (1997).10.1126/science.277.5330.1232Google Scholar
4. Cerclier, Carole, Cousin, F., Bizot, Hervé, Moreau, C. and Cathala, B., Langmuir 26(22), 17248–11725 (2010).10.1021/la102614bGoogle Scholar
5. Valentin, R, Cerclier, C, Geneix, N, Aguié-Béghin, V, Gaillard, C, Ralet, MCand, C. B, Langmuir 26(12), 98919898 (2010).10.1021/la100265dGoogle Scholar
6. Gidley, M. J., Lillford, P. J., Rowlands, D. W., Lang, P., Dentini, M., Crescenzi, V., Edwards, M., Fanutti, C. and Reid, J. S. G., Carbohydrate Research 214(2), 299314 (1991).10.1016/0008-6215(91)80037-NGoogle Scholar
7. Nelson, N., J. Biol. Chem. 153, 375380 (1944).Google Scholar
8. Sturgeon, R. J., in Methods in plant biochemistry, edited by Dey, P. M.and J.B, H.. (London 1990), Vol. Vol. 2, pp. pp 137.10.1016/B978-0-12-461012-5.50007-0Google Scholar
9. Cathell, M. D., Szewczyk, J. C., Bui, F. A., Weber, C. A., Wolever, J. D., Kang, J. and Schauer, C. L., Biomacromolecules 9(1), 289295 (2007).10.1021/bm700845zGoogle Scholar
10. Wagberg, L., Decher, G., Norgren, M., Lindstrom, T., Ankerfors, M. and Axnas, K., Langmuir 24(3), 784795 (2008).10.1021/la702481vGoogle Scholar
11. Hayashi, T., Ogawa, K. and Mitsuishi, Y., Plant and Cell Physiology 35(8), 11991205 (1994).10.1093/oxfordjournals.pcp.a078714Google Scholar
12. Ducèrè, V., Bernés, A. and Lacabanne, C., Sensors and Actuators B: Chemical 106(1), 331334 (2005).10.1016/j.snb.2004.08.028Google Scholar
13. Somogyi, M., Journal of Biological Chemistry 195(1), 1923 (1952).Google Scholar