Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T08:21:02.308Z Has data issue: false hasContentIssue false

Self-Organization of Nitrogen-Containing Polymeric Supramolecules in Thin Films

Published online by Cambridge University Press:  21 March 2011

Matti Knaapila
Affiliation:
Department of Engineering Physics and Mathematics, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Espoo, Finland
Mika Torkkeli
Affiliation:
Department of Physics, University of Helsinki, P.O. Box 9, FIN-00014, Helsinki, Finland
Tapio Mäkelä
Affiliation:
VTT Electronics, Microelectronics, Technical Research Centre of Finland, P. O. Box 1101, FIN-02044 VTT, Espoo, Finland
Lockhart Horsburgh
Affiliation:
Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
Klas Lindfors
Affiliation:
Department of Engineering Physics and Mathematics, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Espoo, Finland
Ritva Serimaa
Affiliation:
Department of Physics, University of Helsinki, P.O. Box 9, FIN-00014, Helsinki, Finland
Matti Kaivola
Affiliation:
Department of Engineering Physics and Mathematics, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Espoo, Finland
Andrew P. Monkman
Affiliation:
Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
Gerritten Brinke
Affiliation:
Materials Science Centre, Dutch Polymer Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The, Netherlands
Olli Ikkala*
Affiliation:
Department of Engineering Physics and Mathematics, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Espoo, Finland
*
Corresponding Author: Email: [email protected]
Get access

Abstract

Rigid rod-like poly(2,5-pyridinediyl), semi-rigid polyaniline and flexible poly(4- vinylpyridine) are nitrogen-containing polymers that with selected amphiphilic oligomers form self-organized comb-shaped supramolecules due to protonation, hydrogen bonding and polar- nonpolar effects combined. Luminescent or conductive ordered structures are demonstrated in thin films. The structures are characterized using small-angle x-ray scattering (SAXS) and grazing-incidence small-angle x-ray scattering (GISAXS). The uniformity is studied using atomic force microscopy and scanning near-field optical microscopy (SNOM).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., and Leeuw, D.M. de, Nature 401, 685 (1999).Google Scholar
2. Ghosh, S., Rasmusson, J., and Inganäs, O., Adv. Mater. 10, 1097 (1998).Google Scholar
3. Apperloo, J.J., Janssen, R.A.J., Malenfant, P.R.L., Groenendaal, L., and Frächet, J.M.J., J. Am. Chem. Soc. 122, 7042 (2000).Google Scholar
4. Reghu, M., Yoon, C.O., Yang, C.Y., Moses, D., Smith, Paul, Heeger, A.J., and Cao, Y., Phys. Rev. B 50, 13931 (1994).Google Scholar
5. Muthukumar, M., Ober, C.K., and Thomas, E.L., Science 277, 1225 (1997).Google Scholar
6. Fyfe, M.C.T., and Stoddart, J.F., Acc. Chem. Res. 30, 393 (1997).Google Scholar
7. Yamamoto, T., Maruyama, T., Zhou, Z-h., Ito, T., Fukuda, T., Yoneda, Y., Begum, F., Ikeda, T., Sasaki, S., Takezoe, H., Fukuda, A., and Kubota, K., J. Am. Chem. Soc. 116, 4832 (1994).Google Scholar
8. Blatchford, J.W., Jessen, S.W., Lin, L.B., Lih, J.J., Gustafson, T.L., Epstein, A.J., Fu, D.K., Marsella, M.J., Swager, T.M., MacDiarmid, A.G., Yamaguchi, S., and Hamaguchi, H., Phys. Rev. Lett. 76, 1513 (1996).Google Scholar
9. Dailey, S., Halim, M., Rebourt, E., Horsburgh, L.E., Samuel, I.D.W., and Monkman, A.P., J. Phys.: Condens. Matter 10, 5171 (1998).Google Scholar
10. Baxter, P., Lehn, J.-M., DeCian, A., Fischer, J., Angew. Chem. Int. Ed. Engl. 32, 69 (1993).Google Scholar
11. Zhu, S.S., Carroll, P.J., and Swager, T.M., J. Am. Chem. Soc. 118, 8713 (1996).Google Scholar
12. Wang, C., Kilitziraki, M., MacBride, J.A.H., Bryce, M.R., Horsburgh, L.E., Sheridan, A.K., Monkman, A.P., and Samuel, I.D.W., Adv. Mater. 12, 217 (2000).Google Scholar
13. Delnoye, D.A.P., Sijbesma, R.P., Vekemans, J.A.J.M., and Meijer, E.W., J. Am. Chem. Soc. 118, 8717 (1996).Google Scholar
14. Winokur, M.J., and Mattes, B.R., Phys. Rev. B 54, 12637 (1996).Google Scholar
15. Stockton, W.B., and Rubner, M.F., Macromolecules 30, 2717 (1997).Google Scholar
16. Ikkala, O. and Brinke, G. ten, Handbook of Advanced Electronic and Photonic Materials and Devices 8, ed. Nalwa, H. (Academic Press, 2000) pp. 185208.Google Scholar
17. Kosonen, H., Ruokolainen, J., Knaapila, M., Torkkeli, M., Jokela, K., Serimaa, R., Brinke, G. ten, Bras, W., Monkman, A.P., and Ikkala, O., Macromolecules 33, 8671 (2000).Google Scholar
18. Ruokolainen, J., Mäkinen, R., Torkkeli, M., Mäkelä, T., Serimaa, R., Brinke, G. ten, and Ikkala, O., Science 280, 557 (1998).Google Scholar
19. Drury, C.J., Mutsaers, C.M.J., Hart, C.M., Matters, M., and Leeuw, D.M. de, Appl. Phys. Lett. 73, 108 (1998).Google Scholar
20. Jeon, N.L., Hu, J., Whitesides, G.M., Erhardt, M.K., and Nuzzo, R.G., Adv. Mater. 10, 1466 (1998).Google Scholar
21. Mäkelä, T., Haatainen, T., Ahopelto, J., and Isotalo, H., Synth. Met. in press, (2000).Google Scholar
22. Smith, R.C., Fischer, W.M., and Gin, D.L., J. Am. Chem. Soc. 119, 4092 (1997).Google Scholar
23. Lauter, U., Meyer, W.H., and Wegner, G., Macromolecules 30, 2092 (1997).Google Scholar
24. Teerenstra, M.N., Klap, R.D., Bijl, M.J., Schouten, A.J., Nolte, R.J.M., Verbiest, T., and Persoons, A., Macromolecules 29, 4871 (1996).Google Scholar
25. Kim, J., McHugh, S.K., and Swager, T.M., Macromolecules 32, 1500 (1999).Google Scholar
26. Horsburgh, L.E., Monkman, A.P., and Samuel, I.D.W., Synth. Met. 101, 113 (1999).Google Scholar
27. Adams, P.N., Laughlin, P.J., Monkman, A.P., Kenwright, A.M., Polymer 37, 3411 (1996).Google Scholar
28. Monkman, A.P., Halim, M., Samuel, I.D.W., and Horsburgh, L.E., J. Chem. Phys. 109, 10372 (1998).Google Scholar
29. Jonforsen, M., Grigalevicius, S., Andersson, M.R., and Hjertberg, T., Synth. Met. 102, 1200 (1999).Google Scholar
30. Ikkala, O., Knaapila, M., Ruokolainen, J., Torkkeli, M., Serimaa, R., Jokela, K., Horsburgh, L., Monkman, A., and Brinke, G. ten, Adv. Mater. 11, 1206 (1999).Google Scholar
31. Knaapila, M., Ruokolainen, J., Torkkeli, M., Serimaa, R., Horsburgh, L., Monkman, A.P., Bras, W., Brinke, G. ten, and Ikkala, O., Synth. Met. in press, (2000).Google Scholar
32. Vikki, T., Pietilä, L.-O., Österholm, H., Ahjopalo, L., Takala, A., Toivo, A., Levon, K., Passiniemi, P., and Ikkala, O., Macromolecules 29, 2945 (1996).Google Scholar