Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T04:33:56.022Z Has data issue: false hasContentIssue false

Self-consistent Scale-bridging Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials

Published online by Cambridge University Press:  18 January 2013

Hajjir Titrian
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany University Duisburg-Essen, Germany
Ugur Aydin
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
Martin Friák
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
Duancheng Ma
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
Jörg Neugebauer
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
Get access

Abstract

A necessary prerequisite for a successful theory-guided up-scale design of materials with application-driven elastic properties is the availability of reliable homogenization techniques. We report on a new software tool that enables us to probe and analyze scale-bridging structure-property relations in the elasticity of materials. The newly developed application, referred to as SC-EMA (Self-consistent Calculations of Elasticity of Multi-phase Aggregates) computes integral elastic response of randomly textured polycrystals. The application employs a Python modular library that uses single-crystalline elastic constants Cij as input parameters and calculates macroscopic elastic moduli (bulk, shear, and Young's) and Poisson ratio of both single-phase and multi-phase aggregates. Crystallites forming the aggregate can be of cubic, tetragonal, hexagonal, orthorhombic, or trigonal symmetry. For cubic polycrystals the method matches the Hershey homogenization scheme. In case of multi-phase polycrystalline composites, the shear moduli are computed as a function of volumetric fractions of phases present in aggregates. Elastic moduli calculated using the analytical self-consistent method are computed together with their bounds as determined by Reuss, Voigt and Hashin-Shtrikman homogenization schemes. The library can be used as (i) a toolkit for a forward prediction of macroscopic elastic properties based on known single-crystalline elastic characteristics, (ii) a sensitivity analysis of macro-scale output parameters as function of input parameters, and, in principle, also for (iii) an inverse materials-design search for unknown phases and/or their volumetric ratios.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Raabe, D., Sander, B., Friák, M., Ma, D., and Neugebauer, J., Acta Materialia, 55, 4475 (2007).10.1016/j.actamat.2007.04.024CrossRefGoogle Scholar
Middya, T. R. and Basu, A. N., J. Appl. Phys. 59, 2368 (1986).10.1063/1.336336CrossRefGoogle Scholar
Middya, T. R., Paul, M., and Basu, A. N., J. Appl. Phys. 59, 2376 (1986).10.1063/1.336337CrossRefGoogle Scholar
Zeller, R. and Dederichs, P. H., Phys. Stat. Solid. B 55, 831 (1973).10.1002/pssb.2220550241CrossRefGoogle Scholar
Friák, M., Counts, W. A., Ma, D., Sander, B., Holec, D., Raabe, D., Neugebauer, J., Materials 5, 1853 (2012).10.3390/ma5101853CrossRefGoogle Scholar
Hershey, A.V., J. Appl. Mech. 9, 49 (1954).Google Scholar
Thomas, J. F., Phys. Rev. 175, 955 (1968).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).10.1103/PhysRevB.54.11169CrossRefGoogle Scholar
McSkimin, H. J., J. Appl. Phys. 26, 406 (1955).10.1063/1.1722007CrossRefGoogle Scholar
Wazzan, A. R. and Robinson, L. B., Phys. Rev. 155, 586 (1967).10.1103/PhysRev.155.586CrossRefGoogle Scholar
de Bretteville, A., Cohen, E. R., Ballato, A. D., Greenberg, I. N., and Epstein, S., Phys. Rev. 148, 575 (1966).10.1103/PhysRev.148.575CrossRefGoogle Scholar
Broudy, R. M. and McClure, J. W., Journal of Applied Physics 31, 1511 (1960).10.1063/1.1735883CrossRefGoogle Scholar
Voigt, W.. Lehrbuch der Kristallphysik. Teubner, Stuttgart (1928).Google Scholar
Reuss, A., Z. Angew. Math. Mech. 9, 49 (1929).10.1002/zamm.19290090104CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S., J. Mech. Phys. Solids 11, 127 (1963).CrossRefGoogle Scholar
Scott, H. H., Journal of Elasticity 58, 269 (2000).10.1023/A:1007675928019CrossRefGoogle Scholar
Norris, A. N., Proc. R. Soc. A 462, 3385 (2006).10.1098/rspa.2006.1726CrossRefGoogle Scholar
To be released in January 2013 at http://www.mpie.de/SC-EMA.html.Google Scholar