Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T06:00:42.317Z Has data issue: false hasContentIssue false

Self-Assembled Magnetic Dots, Antidots, Dot Chains, and Stripes: Epitaxial Co on Ru(0001)

Published online by Cambridge University Press:  21 March 2011

Dongqi Li
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Chengtao Yu
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Extract

Lateral magnetic nanostructures have been grown via molecular beam epitaxy in ultrahigh vacuum and characterized ex-situ with atomic force and magnetic force microscopy. We observed that epitaxial growth of Co onto Ru(0001) at elevated temperature results in three-dimensional Co islands (dots) or a flat Co film network with deep holes (antidots) in truncated pyramidal shapes. The lateral size of these dots/antidots, in the order of 100 nm, tends to be uniform at each given coverage. We attribute the growth mode mainly to strain relaxation of Co epitaxy on Ru, which has a 8% lattice mismatch. In addition, we have explored the placement of these dots on a grooved Ru(0001) surface. The dots automatically align into linear chains along the asymmetric grooves to form either dot chains or continuous stripes, which would open new opportunities in creating either ordered magnetic arrays or arbitrary arrangements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shouheng Sun, Murray, C.B., Weller, D., Folks, L., and Moser, A., Science 287, 1989 (2000); C.T. Black, C.B. Murray, R.L. Sandstrom, and Shouheng Sun, Science 290, 1131 (2000).Google Scholar
2. Gambardella, P., Blanc, M., Brune, H., Kuhnke, K., and Kern, K., Phys. Rev. B 61, 2254 (2000); P. Gambardella, M. Blanc, L. Bürgi, K. Kuhnke, and K. Kern, Surf. Sci. 449, 93 (2000).Google Scholar
3. Liu, K., Baker, S. M., Tuominen, M., Russell, T. P and Schuller, I. K., Phys. Rev. B 63, 060403(2001).Google Scholar
4. Phys. Rev. 63, 060403(2001)Google Scholar
5. Chou, Y., Wei, M.S., Krauss, P.R., and Fisher, P.B., J. Appl. Phys., 76, 6673 (1994).Google Scholar
6. White, R.L., New, R.H., and Pease, R.F.W., IEEE Transactions on Magnetics, 33, 990 (1997).Google Scholar
7. Politi, P., Grenet, G., Amarty, A., Ponchet, A., and Villain, J., Phys. Reports 324, 271(2000), and references therein.Google Scholar
8. Himpsel, F.J., Jung, T., and Ortega, J.E., Surf. Rev. Lett. 4, 371 (1997).Google Scholar
9. Hauschild, J., Elmers, H.J., and Gradmann, U., Phys. Rev. B 57, R677 (1998).Google Scholar
10. Shen, J., Klaua, M., Ohresser, P., Jenniches, H., Barthel, J., Mohan, C.V., and Kirschner, J., Phys. Rev. B 56, 11134 (1997).Google Scholar
11. Li, Dongqi, Cuenya, B. Roldan, Pearson, J., and Bader, S.D., Phys. Rev. B 64, 144410 (2001); B. Roldan Cuenya, J. Pearson, Chengtao Yu, Dongqi Li, and S.D. Bader, J. Vac. Sci. Technol. A 19, 1182 (2001).Google Scholar
12. Röder, H., Hahm, E., Brune, H., Bucher, J-P and Kern, K., Nature 366, 141 (1993); H. Brune, K. Bromann, H. Röder, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, and J. Nørskov, Phys. Rev. B 52, R14380, (1995).Google Scholar
13. Tober, E.D., Farrow, R.F.C., Marks, R.F., Witte, G., Kalki, K., and Chambliss, D.D., Phys. Rev. Lett. 70, 3943 (1993).Google Scholar
14. Li, Dongqi, Diercks, V., Pearson, J., Jiang, J. S., and Bader, S. D., J. Appl. Phys., 85, 5285 (1999).Google Scholar
15. Chambliss, D. D., Wilson, R. J., and Chiang, S., Phys. Rev. Lett. 66, 1721 (1991).Google Scholar
16. Yu, Chengtao, Li, Dongqi, Pearson, J., and Bader, S.D., Appl. Phys. Lett. 78, 1228 (2001).Google Scholar
17. Yu, Chengtao, Li, Dongqi, Pearson, J., and Bader, S.D., Appl. Phys. Lett. 79, 3848 (2001).Google Scholar
18.For an introduction on spintronics, see Hathaway, K. and Prinz, G., Phys. Today, 48, 24 (1995).Google Scholar
19. Musket, R. G., Mclean, W., Colmenares, C. A., Makowiecki, D. M., and Siekhaus, W. J., Appl. Surf. Sci. 10, 143 (1982).Google Scholar
20. Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
21. Yu, Chengtao, Pearson, J., and Li, Dongqi, J. Appl. Phys., in press.Google Scholar