Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:47:38.202Z Has data issue: false hasContentIssue false

Selective-Area Epitaxy and In-Situ Etching of Gaas Using Tris- Dimethylaminoarsenic By Chemical Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

N. Y. Li
Affiliation:
ECE Department, University of California, San Diego, La Jolla, CA 92093–0407, [email protected]
C. W. Tu
Affiliation:
ECE Department, University of California, San Diego, La Jolla, CA 92093–0407, [email protected]
Get access

Abstract

In this study, we shall first report selective-area epitaxy (SAE) of GaAs by chemical beam epitaxy (CBE) using tris-dimethylaminoarsenic (TDMAAs), a safer alternative source to arsine (AsH3), as the group V source. With triethylgallium (TEGa) and TDMAAs, true selectivity of GaAs can be achieved at a growth temperature of 470°C, which is much lower than the 600°C in the case of using TEGa and arsenic (As4) or AsH3. Secondly, we apply SAE of carbon-doped AIGaAs/GaAs to a heterojunction bipolar transistor (HBT) with a regrown external base, which exhibits a better device performance. Finally, the etching effect and the etched/regrown interface of GaAs using TDMAAs will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bove, P., Ono, K., Joshin, K., Tanaka, H., Kasai, K. and Komeno, J., J. Crystal Growth 136, p.261 (1994).Google Scholar
2. Mörsch, G., Gräber, J., Kamp, M., Hollfelder, M. and Lüth, H., J. Crystal Growth 136, p. 256 (1994).Google Scholar
3. Bohling, D. A., Abernathy, C. R., and Jensen, K. F., J. Crystal Growth 136, p. 118 (1994).Google Scholar
4. Abernathy, C. R., Wisk, P. W., Bohling, D. A., and Muhr, G. T., Appl. Phys. Lett. 60, p.2421 (1992).Google Scholar
5. Dong, H. K., Li, N. Y., Tu, C. W., Geva, M., and Mitchel, W. C., J. Electron. Mater. 24, p.69 (1994).Google Scholar
6. Zimmermann, G., Protzmann, H., Marschner, T., Zsebök, O., Stolz, W., Göbel, E. O., Gimnnich, P., Lorberth, J., Filz, T., Kurpas, P., and Richter, W., J. Cryst. Growth 129, p.37 (1993).Google Scholar
7. Weingarten, H. and White, W. A., J. Am. Chem. Soc. 850, p.88 (1960).Google Scholar
8. Dong, H. K., Li, N. Y., Wong, W. S., and Tu, C. W., submitted to J. Vac. Sci. Technol. (1996).Google Scholar
9. Asahi, H., Liu, X. F., Inoue, K., Marx, D., Asami, K., Miki, K., and Gonda, S., J. Cryst. Growth 145, p.668 (1994).Google Scholar
10. Li, N. Y., Hsin, Y. M., Bi, W. G., Asbeck, P. M., and Tu, C. W., unpublished.Google Scholar
11. Mitani, K., Masuda, H., Mochizuki, K. and Kusano, C., IEEE Electron Device Lett. EDL–13, p.209 (1992).Google Scholar
12. Furuhata, N. and Okamoto, A., J. Crystal Growth 112, p. 1 (1991).Google Scholar
13. Dong, H. K., Li, N. Y., Wong, W. S., and Tu, C. W., submitted to J. Vac. Sci. Technol. (1996).Google Scholar
14. Villaflor, A. B., Asahi, H., Marx, D., Miki, K., Yamamoto, K., Gonda, S., J. Cryst. Growth 150, p.638 (1995).Google Scholar
15. Li, N. Y., Dong, H. K., Hsin, Y. M., Nakamura, T., Asbeck, P. M., and Tu, C. W., J. Vac. Sci. Technol. B 13, p. 664 (1995).Google Scholar
16. Mui, D. S. L., Strand, T. A., Thibeault, B. J., Coldren, L. A., Petroff, P. M. and Hu, E. L., Inst. Phys. Conf. Ser. 141, p.291 (1995).Google Scholar