Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T05:28:18.676Z Has data issue: false hasContentIssue false

Selective Oxidation of Buried Aigaas for Fabrication of Vertical-Cavity Lasers

Published online by Cambridge University Press:  10 February 2011

Kent D. Choquette
Affiliation:
Photonics Research Department Sandia National Laboratories Albuquerque, NM 87185–0603
K. M. Geib
Affiliation:
Photonics Research Department Sandia National Laboratories Albuquerque, NM 87185–0603
H. C. Chui
Affiliation:
Photonics Research Department Sandia National Laboratories Albuquerque, NM 87185–0603
H. Q. Hou
Affiliation:
Photonics Research Department Sandia National Laboratories Albuquerque, NM 87185–0603
Robert Hull
Affiliation:
University of Virginia Department of Materials Science Charlottesville, VI 22903–2442
Get access

Abstract

We discuss the selective conversion of buried layers of AlGaAs to a stable oxide and the implementation of this oxide into high performance vertical-cavity surface emitting lasers (VCSELs). The rate of lateral oxidation is shown to be linear with an Arrhenius temperature dependence. The measured activation energies vary with Al composition, providing a high degree of oxidation selectivity between AIGaAs alloys. Thus buried oxide layers can be selectively fabricated within the VCSEL through small compositional variations in the AlGaAs layers. The oxidation of AlGaAs alloys, as opposed to AlAs, is found to provide robust processing of reliable lasers. The insulating and low refractive index oxide provides enhanced electrical and optical confinement for ultralow threshold currents in oxide-apertured VCSELs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Huffaker, D. L., Deppe, D. G., Kumar, K., and Rogers, T. J., Appl. Phys. Lett. 65, 97 (1994).Google Scholar
2 Yang, G. M., MacDougal, M. H., Dapkus, P. D., Electron. Lett. 31, 886 (1995).Google Scholar
3 Choquette, K. D., Schneider, R. P. Jr.,, Lear, K. L., and Geib, K. M., Electron. Lett. 30, 2043 (1994).Google Scholar
4 Choquette, K. D., Schneider, R. P. Jr.,, Crawford, M. H., Geib, K. M., and Figiel, J. J., Electron. Lett. 31, 1145 (1995).Google Scholar
5 Lear, K. L., Choquette, K. D., Schneider, R. P. Jr.,, Kilcoyne, S. P., and Geib, K. M., Electron. Lett. 31, 208 (1995).Google Scholar
6 Choquette, K. D., Lear, K. L., Schneider, R. P. Jr.,, and Geib, K. M., Appl. Phys. Lett. 66, 3413 (1995).Google Scholar
7 Lear, K. L., Choquette, K. D., Schneider, R. P. Jr.,, and Kilcoyne, S. P., Appl. Phys. Lett. 66, 2616 (1995).Google Scholar
8 Dallesasse, J. M., Holonyak, N. Jr.,, Sugg, A. R., Richard, T. A., and El-Zein, N., Appl. Phys. Lett. 57, 2844 (1990).Google Scholar
9 Dallesasse, J. M. and Holonyak, N. Jr.,, Appl. Phys. Lett. 58, 394 (1991).Google Scholar
10 Fiore, A., Berger, V., Rosencher, E., Laurent, N., Theilmann, S., Vodjdani, N., and Nagle, J., Appl. Phys. Lett. 68, 1320 (1996).Google Scholar
11 Chen, E. I., Holonyak, N. Jr.,, and Maranowski, S. A., Appl. Phys. Lett. 66, 2688 (1995).Google Scholar
12 Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
13 Choquette, K. D., Lear, K. L., Schneider, R. P. Jr.,, Geib, K. M., Figiel, J. J., and Hull, R., IEEE Photon. Tech. Lett. 7, 1237 (1995).Google Scholar
14 Schneider, R. P. Jr.,, Lott, J. A., Crawford, M. Hagerott, and Choquette, K. D., Inter. J. High Speed Electronics and Systems 5, 625 (1994).Google Scholar
15 Lear, K. L. and Schneider, R. P. Jr.,, Appl. Phys. Lett. 68, 605 (1996).Google Scholar
16 Lear, K. L., Schneider, R. P. Jr.,, Choquette, K. D., Kilcoyne, S. P., Figiel, J. J., and Zolper, J. C., IEEE Photon. Tech. Lett. 6, 1053 (1994).Google Scholar
17 Choquette, K. D., Hasnain, G., Wang, Y. H., Wynn, J. D., Freund, R. S., Cho, A. Y., and Leibenguth, R. E., IEEE Photon. Tech. Lett. 3, 859 (1991).Google Scholar
18 Huffaker, D. L, Shin, J., and Deppe, D. G., Electron. Lett. 30, 1946 (1994).Google Scholar
19 Choquette, K. D., Chui, H., and Geib, K. M., unpublished.Google Scholar
20 MacDougal, M. H., Zhao, H., Dapkus, P. D., Ziari, M., and Steier, W. H., Electron. Lett. 30, 1147 (1994).Google Scholar
21 Tweston, R. D., Follstaedt, D. M., Choquette, K. D., and Schneider, R. P. Jr.,, submitted to Appl. Phys. Lett. (1996).Google Scholar
22 Lee, Y. H., Tell, B., Brown-Goebeler, K., Jewell, J. L., and Hove, J. V., Electron. Lett. 26, 710 (1990).Google Scholar
23 Choquette, K. D., Chow, W. W., Crawford, M. Hagerott, Geib, K. M., and Schneider, R. P. Jr.,, submitted to Appl. Phys. Lett. (1996).Google Scholar