Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T10:45:19.273Z Has data issue: false hasContentIssue false

Segregation of Ag and Cu During Ion Beam and Thermally Induced Recrystallization of Amorphous Si

Published online by Cambridge University Press:  25 February 2011

J. S. Custer
Affiliation:
Dept. of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Michael O. Thompson
Affiliation:
Dept. of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
J. M. Poatet
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The segregation of Ag and Cu impurities in amorphous Si during both thermal and ion beam induced epitaxial crystallization has been studied. During thermal regrowth at 550°C, both Ag and Cu are initially trapped at increasing concentration in the shrinking a-Si layer. At a critical concentration, though, regrowth becomes non-planar and the impurities are no longer entirely trapped in the a-Si. Above 0.08 at% and 0.15 at% respectively, the excess impurity is lost to the crystal region and diffuses rapidly away from the interface. Under low temperature (200 - 400°C) epitaxy induced by a 2.5 MeV Ar+ beam, segregation and trapping are initially observed. As regrowth proceeds, however, the segregation no longer follows the simple model

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Csepregi, L., Mayer, J. W., and Sigmon, T. W., Physics Letters 54A, 157 (1975).Google Scholar
2 Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., Mat. Res. Soc. Symp. Proc. 13, 141 (1983).Google Scholar
3 Custer, J. S., Thompson, Michael O., and Bucksbaum, P. H., Appl. Phys. Lett. 53, 1402 (1988).Google Scholar
4 Kennedy, E. F., Csepregi, L., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4241 (1977).Google Scholar
5 Olson, G. L. and Roth, J. A., Mat. Sci. Reports 3, 3 (1988).Google Scholar
6 Jacobson, D. C., Poate, J. M., and Olson, G. L., Appl. Phys. Lett. 48, 118 (1986).CrossRefGoogle Scholar
7 Poate, J. M., Jacobson, D. C., Williams, J. S., Elliman, R. G., and Boerma, D. O., Nucl. Instr. and Meth. B19/20, 480 (1987), and references therein.Google Scholar
8 Holmen, G. and Hogberg, P., Radiat. Eff. 12, 77 (1972).Google Scholar
9 Golecki, I., Chapman, G. E., Lau, S. S., Tsaur, B. Y., and Mayer, J. W., Physics Letters 71A, 267 (1979).CrossRefGoogle Scholar
10 Nakata, J., and Kajiyama, K., Appl. Phys. Lett. 40, 686 (1982).CrossRefGoogle Scholar
11 Linnros, J., Holmen, G., and Svensson, B., Phys. Rev. B 32, 2270 (1985).Google Scholar
12 Priolo, F., Poate, J. M., Jacobson, D. C., Batstone, J. L., and Campisano, S. U., Ion Beam Modification of Materials, Tokyo, 1988 (to be published).Google Scholar
13 Poate, J. M., Linnros, J., Priolo, F., Jacobson, D. C., Batstone, J. L., and Michael Thompson, O., Phys. Rev. Lett. 60, 1322 (1988).Google Scholar
14 Trumbore, F. A., Bell Syst. Tech. Journal, 39, 205 (1960).Google Scholar
15 Priolo, F., Batstone, J. L., Poate, J. M., Linnros, J., Jacobson, D. C., and Michael Thompson, O., Appl. Phys. Lett. 52, 1043 (1988).CrossRefGoogle Scholar
16 Wielopolski, Lucien and Gardner, Robin P., Nucl. Instr. and Meth. 133, 303 (1976).Google Scholar
17 Olson, G. L., private communicationGoogle Scholar