Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T10:52:45.180Z Has data issue: false hasContentIssue false

Second and third order Nonlinear Optical Properties of Crystalline Inorganic / Organic Complexes.

Published online by Cambridge University Press:  21 February 2011

Henry O. Marcy
Affiliation:
Rockwell International Science Center, P.O. Box 1085, Thousand Oaks, CA 91358
Leslie. F. Warren
Affiliation:
Rockwell International Science Center, P.O. Box 1085, Thousand Oaks, CA 91358
Laura E. Davis
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Mark S. Webb
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Stephan P. Velsko
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Get access

Abstract

The properties for members of a new class of nonlinear optical (NLO) materials which stoichiometrically incorporate organic and inorganic constituents into a single crystalline lattice are reported. Recent results for our synthetic, crystal growth, and optical studies suggest that a number of these relatively transparent “semiorganic” compounds have significant second and/or third order NLO responses and often display favorable crystal growth morphologies.

The prototype material of this class, zinc tris(thiourea) sulfate, or ZTS, has a UV cutoff at about 325 nm, can be readily grown to cm3 sizes, and has been shown to be a highly efficient Type II frequency doubler for 1064 nm Nd:YAG laser radiation. ZTS also possesses a moderate third order nonlinear optical response (ca. 0.1 × CS2) which occurs on at least a picosecond time scale as determined by degenerate four-wave mixing (DFWM) experiments at 532 nm.

Refractive index, second harmonic generation, and DFWM data for a number of these new compounds are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nonlinear Optical Properties of Organic and Polymeric Materials, edited by Williams, D. J., ACS Symposium Series, 233, (American Chemical Society, Washington, DC, 1982).Google Scholar
2. Nonlinear Optical Properties of Organic Materials and Crystals, edited by Chemla, D. S. and Zyss, J., Vol. 1 and 2, (Academic Press, New York, 1987).Google Scholar
3. Materials for Nonlinear Optics – Chemical Perspectives, edited by Marder, S. R., Sohn, J. E. and Stucky, G. D., ACS Symposium Series, 455, (American Chemical Society, Washington, DC, 1990).Google Scholar
4. Prasad, P. N. and Reinhardt, B. A., Chem. Mater. 2, 660669 (1990).CrossRefGoogle Scholar
5. Newman, P. R., Warren, L. F., Cunningham, P. H., Chang, T. Y., Cooper, D. E., Burdge, G. L., Polak-Dingels, P. and Lowe-Ma, C. K., in Advanced Organic Solid State Materials, edited by Chiang, L. Y., Chaikin, P. M. and Cowan, D. O., Materials Research Society Symposium Proceedings, 173, (Materials Research Society, Pittsburgh, PA, Boston, MA, 1989) p. 557–561.Google Scholar
6. Warren, L. F., in Electronic Materials – Our Future, edited by Allred, R. E., Martinez, R. J. and Wischmann, K. B., Proceedings of the 4th International SAMPE Electronics Conference, 4, (Society for the Advancement of Material and Process Engineering, Covina, CA, 1990) p. 388–396.Google Scholar
7. Velsko, S. P., in Materials for Nonlinear Optics – Chemical Perspectives, edited by Marder, S. R., Sohn, J. E. and Stucky, G. D., ACS Symposium Series, 455, (American Chemical Society, Washington, DC, 1990).Google Scholar
8. Marder, S. R., Perry, J. W. and Schaefer, W. P., Science 245, 626628 (1989).CrossRefGoogle Scholar
9. Marcy, H. O., Warren, L. F., Webb, M. S., Ebbers, C. A., Velsko, S. P., Kennedy, G. C. and Catella, C. C., Appl. Opt. (in press).Google Scholar
10. Haussuhl, S., Bohaty, L. and Grazel, U., Zeit. Krist. 167, 307309 (1984).Google Scholar
11. Xing, G., Jiang, M., Shao, Z. and Xu, D., Chinese Phys. Lasers 14, 357364 (1987).Google Scholar
12. Wang, W. S., Sutter, K., Bosshard, C., Pan, Z., Arend, H., Gunter, P., Chapuis, G. and Nicolo, F., Japn. J. Appl. Phys. 21, 11381141 (1988).CrossRefGoogle Scholar
13. Tao, X., Jiang, M., Xu, D. and Shao, Z., Tongbao, Kexue (Foreign Lang. Ed.) 33, 651654 (1988).Google Scholar
14. Zhang, N., Jiang, M., Yuan, D., Xu, D. and Tao, X., Chinese Phys. Lett. 6, 280283 (1989).CrossRefGoogle Scholar
15. Andreetti, G. D., Cavalca, L. and Musatti, A., Acta Cryst. B24, 683690 (1968).Google Scholar
16. Velsko, S. P., Opt. Eng. 28, 7684 (1989).CrossRefGoogle Scholar
17. Eimerl, D., IEEE J. Quantum Elect. OE–23, 575592 (1987).Google Scholar
18. Zemike, F. and Midwinter, J. E., in Applied Nonlinear Optics, (John Wiley and Sons, New York, 1973).Google Scholar
19. Zyss, J., Nicoud, J. F. and Coquillay, M., Appl. Phys. Lett. 81, 41604167 (1984).Google Scholar
20. Klug, H. P., Alexander, L. E. and Sumner, G. G., Acta Cryst. 11, 4146 (1958).Google Scholar
21. Iwasaki, H. and Hagihara, H., Acta Cryst. B28, 507513 (1972).Google Scholar