Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T11:24:30.609Z Has data issue: false hasContentIssue false

Search for the Major Chlorine-Related Defects in CdTe:Cl

Published online by Cambridge University Press:  05 February 2014

Dmitry Krasikov
Affiliation:
Kintech Lab Ltd., 1, Kurchatov Sq., Moscow 123182, Russia
Andrey Knizhnik
Affiliation:
Kintech Lab Ltd., 1, Kurchatov Sq., Moscow 123182, Russia
Boris Potapkin
Affiliation:
Kintech Lab Ltd., 1, Kurchatov Sq., Moscow 123182, Russia
Timothy Sommerer
Affiliation:
GE Global Research, Niskayuna, NY 12309 U.S.A.
Get access

Abstract

Understanding the effect of chlorine-related defects on the CdTe electric properties is important both for obtaining high resistivity CdTe-based detectors and for high efficiency CdTe-based thin-film solar cells. The actual mechanism of the effect of Cl on electric properties of CdTe is not clear and different sometimes contradictory hypotheses appear. For example ClTeVCd shallow acceptor complex defect was proposed both as a reason of increased carrier concentration in CdTe thin film and also as a reason of high resistivity of CdTe:Cl thin films. In the present work we are trying to clarify the effect of Cl on CdTe electric properties and to find the reason of high resistivity of CdTe:Cl crystals using first principles calculations and defect chemistry modeling. For the first time we are trying to develop a model capable to describe experimental data on both high temperature and room temperature conductivity of CdTe:Cl.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Popovych, V.D., Virt, I.S., Sizov, F.F. et al. ., J. Crystal Growth 308, 63 (2007).CrossRefGoogle Scholar
Shin, H-Y, Sun, C-Y, J. Crystal Growth 186, 6778 (1998).CrossRefGoogle Scholar
Eiche, C., Maier, D., Sinerius, D., Weese, J., Benz, K. W., Honerkamp, J., J. Appl. Phys. 74, 6667 (1993).CrossRefGoogle Scholar
Kosyachenko, L.A., Lambropoulos, C.P., Aoki, T. et al. ., Semicond. Sci. Technol. 27, 015007 (2012).CrossRefGoogle Scholar
Kröger, F.A., Rev. Phys. Appl. (Paris) 12, 205210 (1977).CrossRefGoogle Scholar
Fiederle, M., Babentsov, V., Franc, J., Fauler, A., Konrath, J.-P., Cryst. Res. Technol. 38, 588597 (2003).CrossRefGoogle Scholar
Höschl, P., Grill, R., Franc, J., et al. ., Proc. SPIE 4507, 273 (2001).CrossRefGoogle Scholar
Grill, R., Nahlovskyy, B., Belas, E. et al. ., Semicond. Sci. Technol. 25, 045019 (2010).CrossRefGoogle Scholar
Park, C. H. and Chadi, D. J., Phys. Rev. B 52, 11884 (1995).CrossRefGoogle Scholar
Biswas, K., Du, M.-H., New J. Phys. 14, 063020 (2012).CrossRefGoogle Scholar
Kresse, G., Hafner, J., Phys. Rev. B 47, 558 (1993) (ibid. 49, 14251(1994)); G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999). CrossRefGoogle Scholar
Krukau, A.V., Vydrov, O.A., Izmailov, A.F., Scuseria, G.E., J. Chem. Phys. 125, 224106 (2006).CrossRefGoogle Scholar
Ma, J., Wei, S.-H., Gessert, T.A., Chin, K.K., Phys. Rev. B 83, 245207 (2011).CrossRefGoogle Scholar
Krasikov, D., Knizhnik, A., Potapkin, B., Selezneva, S., Sommerer, T., Thin Solid Films 535, 322325 (2013).CrossRefGoogle Scholar
Krasikov, D., Knizhnik, A., Potapkin, B., Sommerer, T., Semicond. Sci. Technol. 28, 125019 (2013).CrossRefGoogle Scholar
Hofmann, D.M., Omling, P., Grimmeiss, H.G. et al. ., Phys. Rev. B 45, 11, 62456250 (1992).Google Scholar
Stadler, W., Hofmann, D.M., Alt, H.C. et al. ., Phys. Rev. B 16, 10619106330 (1995).CrossRefGoogle Scholar
Grill, R., Zappettini, A., Progr. Crystal Growth and Charact. Mater. 48/49, 209-244 (2004).CrossRefGoogle Scholar
Frank, J., Höschl, P., Grill, R. et al. ., J. Electronic Materials 30, 595602 (2001).CrossRefGoogle Scholar