Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:26:29.587Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy Studies of Metal/Metal Epitaxial Growth.

Published online by Cambridge University Press:  15 February 2011

David D. Chambliss
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Shirley Chiang
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Robert J. Wilson
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Get access

Abstract

The morphologies of submonolayer films of Ni, Fe, Au, and Ag deposited on Au(111) at room temperature are studied using scanning tunneling microscopy (STM). The structures of steps and islands on length scales up to ˜3000Å are examined to determine processes of atomic motion and island nucleation. In all cases the deposited atoms move rapidly at room temperature and their aggregation is affected by the Au(111) “herringbone” reconstruction. Ni and Fe aggregate to form island arrays with regular spacing, which are nucleated at “elbow” sites of the herringbone pattern. Au forms fewer islands, showing these atoms are less likely to stick at these elbow sites. Ag forms a complex structure of monolayer-high fingers which reflect the interaction of diffusion-controlled aggregation with energetic differences defined by the reconstruction. These studies make it clear that the final structure of an ultrathin metal film can depend sensitively on fine details of atomic structure in the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wilson, R. J., Chiang, S., and Chambliss, D. D., Aust. J. Phys. 43, 393 (1990).Google Scholar
2 Chambliss, D. D., Wilson, R. J., and Chiang, S., Phys. Rev. Lett. 66, 1721 (1991).Google Scholar
3 Chambliss, D. D. and Wilson, R. J., J. Vac. Sci. Technol. 9, xxx (1991).Google Scholar
4 Barth, J. V., Brune, H., Ertl, G., and Behm, R. J., Phys. Rev. B 42, 9307 (1990).Google Scholar
5 Huang, K., Gibbs, D., Ocko, B., Zehner, D., Sandy, A., and Mochrie, S., Phys. Rev. Lett. 65, 3313 (1990).Google Scholar
6 Sandy, A., Mochrie, S., Zehner, D., Huang, K., and Gibbs, D., Phys. Rev. B 43, 4667 (1991).Google Scholar
7 Chiang, S., Wilson, R. J., Gerber, C., and Hallmark, V. M., J. Vac. Sci. Technol. A 6, 386 (1988).Google Scholar
8 Perderau, J., Biberian, J. P., and Rhead, G. E., J. Phys. F 4, 798 (1974).Google Scholar
9 Melle, H. and Menzel, E., Z. Naturforsc. 33a, 282 (1978).Google Scholar
10 Harten, U., Lahee, A., Toennies, J., and Wöll, C., Phys. Rev. Lett. 54, 2619 (1985).Google Scholar
11 Takayanagi, K. and Yagi, K., Trans. Jpn. Inst. Met. 24, 337 (1983).Google Scholar
12 Wöll, C., Chiang, S., Wilson, R. J., and Lippel, P. H., Phys. Rev. B 39, 7988 (1989).Google Scholar
13 EI-Bacanouny, M., Burdick, S., and Martini, K. M., Phys. Rev. Lett. 58, 2762 (1987).Google Scholar
14 Takeuchi, N., Chan, C. T., and Ho, D., Presented at the 1990 AVS Annual Symposium, Toronto, 1990 (unpublished).Google Scholar
15 Alerhand, O., Vanderbilt, D., Meade, R., and Joannopoulos, J., Phys. Rev. Lett. 61, 1973 (1988).Google Scholar
16 Chambliss, D. D., Wilson, R. J., and Chiang, S., J. Vac. Sci. Technol. 9, xxx (1991).Google Scholar
17 Stroscio, J. A., Pierce, D. T., Dragoset, R. A., and Celotta, R. J., Presented at the 1991 APS March Meeting, Cincinnati, OH, 1991 (unpublished).Google Scholar
18 Lang, C., Dovek, M., Nogami, J., and Quate, C., Surf. Sci. 224, L947 (1989).Google Scholar
19 Chambliss, D. D., Chiang, S., and Wilson, R. J., (unpublished).Google Scholar
20 Voigtländer, B., Meyer, G., and Amer, N. M., Presented at the 1991 APS March Meeting, Cincinnati, OH, 1991 (unpublished).Google Scholar
21 Bales, G. S. and Zangwill, A., Phys. Rev. B 41, 5500 (1990).Google Scholar
22 Whitten, T. A. and Sander, L. M., Phys. Rev. B 27, 5686 (1983).Google Scholar
23 Vicsek, T., Phys. Rev. Lett. 53, 2281 (1984).Google Scholar
24 Voss, R. F., J. Stat. Phys. 36, 861 (1984).CrossRefGoogle Scholar
25 Kadanoff, L., J. Stat. Phys. 39, 267 (1985).Google Scholar
26 Bensimon, D., Kadanoff, L., Liang, S., Shraiman, B., and Tang, C., Rev. Mod. Phys. 58, 977 (1986).Google Scholar
27 Dovek, M. M., Lang, C. A., Nogami, J., and Quate, C. F., Phys. Rev. B 40, 11974 (1989).Google Scholar