Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:22:22.405Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy Perspective of Structures on Reduced SrTiO3 (001) Surfaces

Published online by Cambridge University Press:  15 February 2011

Yong Liang
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104–6272
Dawn A. Bonnell
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104–6272
Get access

Abstract

Scanning tunneling microscopy has been used in ultra high vacuum to provide atomic scale structural information on reduced SrTiO3(001) surfaces. Our tunneling images exhibit row-like features with 12 Å and 20 Å periodicities on the reduced surface. A local 2×1 reconstruction was also revealed on some regions of the surface. The experimental results are discussed in terms of the different sublimation rates of surface constituents and formation of lamella structures of Srn+lTinO3n+l.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderson, J. S. and Tilley, R. J. D., in Surface and Defect Properties of Solids, edited by Roberts, M. W. and Thomas, J. M. (The Chemical Society London, 3, 1974) pp. 156.Google Scholar
2. Ruddlesden, S. N. and Popper, P., Acta Cryst. 11, 54 (1958).Google Scholar
3. see, for example, Rohrer, G. S., Henrich, V. E., and Bonnell, D. A., Science, 250, 1239 (1990).Google Scholar
4. Feenstra, R. M. and Stroscio, J. A., J. Vac. Sci. Technol. B5, 923 (1987).Google Scholar
5. Bonnell, D. A., Characterization Tech. 5, 315 (1989).Google Scholar
6. Liang, Y. and Bonnell, D. A., Sur. Sci. Lett. submitted.Google Scholar
7. Bonnell, D. A. and Clarke, D. R., J. Am. Ceram. Soc. 71, 629 (1988).Google Scholar
8. Cord, B. and Courths, R., Surf. Sci. 162, 34 (1985).Google Scholar
9. Lang, N. D., Phys. Rev. Lett. 56, 1164 (1986).Google Scholar
10. Dubois, L. H. and Gole, J. L., J. Chem. Phys. 66, 779 (1977). F. Engelke, R. K. Sander, and R. N. Zare, J. Chem. Phys. 65, 1146 (1976).Google Scholar
11. Brookes, N. B., Quinn, F. M., and Thornton, G., Vacuum, 38, 405 (1988). private communication.CrossRefGoogle Scholar
12. Henrich, V. E., Dresselhaus, G., and Zeiger, H. J., Phys. Rev. B17, 4908 (1978).CrossRefGoogle Scholar
13. Tilley, R. J. D., J. Solid State Chem. 21, 293 (1977).Google Scholar
14. Bums, G., Dacol, F. H., Kliche, G., Konig, W., and Shafer, M. W., Phys. Rev. B37, 3381 (1988).Google Scholar
15. Cockroft, N. J., Lee, S. H., and Wright, J. C., Phys. Rev. B44, 4117 (1991).Google Scholar