Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T09:22:33.337Z Has data issue: false hasContentIssue false

Scaling and Coarsening in Epitaxial Growth

Published online by Cambridge University Press:  10 February 2011

Fereydoon Family
Affiliation:
Department of Physics, Emory University, Atlanta GA 30322
Jacques G. Amar
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo OH 43606
Get access

Abstract

The results of recent theoretical and simulational studies of submonolayer and multilayer homoepitaxial growth are discussed. In the submonolayer regime, the results of kinetic Monte Carlo simulations are presented and shown to provide a quantitative explanation for the variation of the submonolayer island density, critical island size, island-size distribution and morphology as a function of temperature and deposition rate found in recent experiments. In multilayer growth, a realistic model for homoepitaxial growth on fcc and bcc lattices which takes into account the correct crystal structure is reviewed. The effects of instabilities which lead to mound formation and coarsening are discussed and a unified picture of the effects of attractive and repulsive interactions at ascending and descending steps on surface morphology and island nucleation is presented. An accurate prediction of the observed mound angle for Fe/Fe(100) deposition is obtained analytically and by kinetic Monte Carlo simulations. The general dependence of the mound angle, and mound coarsening behavior on temperature, deposition rate, and strength of the step barrier in bcc(100) and fcc(100) growth is also presented and compared with recent experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsao, J. Y., Materials fundamentals of molecular beam epitaxy, World-Scientific, Singapore, 1993.Google Scholar
2. Vicsek, T. and Family, F., Phys. Rev. Lett. 52 1669 (1984).Google Scholar
3. Family, F. and Meakin, P., Phys. Rev. Lett. 61,428 (1988).Google Scholar
4. Family, F. and Meakin, P., Phys. Rev. A 40, 1998 (1989) 3836.Google Scholar
5. Blackman, J. A. and Wilding, A., Europhys. Lett. 16 115 (1991); M.C. Bartelt and J.W. Evans, Phys. Rev. B 46, 12675 (1992); C. Ratsch, A. Zangwill, P. Smilauer, and D. D. Vvedensky, Phys. Rev. Lett. 72, 3194 (1994).Google Scholar
6. Amar, J.G., Family, F., and Lam, P.-M., Mat. Res. Soc. Proc. 317,167 (1994); J.G. Amar, F. Family, and P.-M. Lam, Phys. Rev. B 50, 8781 (1994).Google Scholar
7. Bales, G.S. and Chrzan, D.C., Phys. Rev. B 50 6057 (1994).Google Scholar
8. Family, F. and Vicsek, T., J. Phys. A 18, L75 (1985).Google Scholar
9. Family, F. and Vicsek, T., eds. Dynamics of Fractal Surfaces, World-Scientific, Singapore (1991); H.-N. Yang, G.-C. Wang, and T.-M. Lu, Diffraction from Rough Surfaces and Dynamic Growth Fronts, World Scientific, Singapore (1993).Google Scholar
10. Barabási, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth, Cambridge Univ. Press, Cambridge, UK (1995); F. Family, P. Meakin, B. Sapoval and R. Wool, eds., Fractal Aspects of Materials, Mat. Res. Soc., Pittsburgh (1995).Google Scholar
11. Ehrlich, G. and Hudda, F., J. Chem. Phys. 44 1039 (1966); R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969).Google Scholar
12. Amar, J.G. and Family, F., Phys. Rev. Lett. 74, 2066 (1995).Google Scholar
13. Amar, J.G. and Family, F., Surface Science 382 170 (1997).Google Scholar
14. Popescu, M., Amar, J.G. and Family, F., Phys. Rev. B 58 (July 15, 1998).Google Scholar
15. Popescu, M., Amar, J.G. and Family, F., in this volume: Mechanisms and Principles of Epitaxial Growth in Metallic Systems, Luc Wille et al, editors, Mat. Res. Soc. Proc. (1998).Google Scholar
16. Family, F. and Amar, J.G.,Mat. Sci. and Eng. B30 149 (1995).Google Scholar
17. Amar, J.G. and Family, F., Thin Solid Films 272,208 (1996).Google Scholar
18. Chambliss, D.D. and Johnson, K.E., Phys. Rev. B 50, 5012 (1994).Google Scholar
19. Stoyanov, S. and Kashchiev, D., in Kaldis, E. (ed.), Current Topics in Materials Science, Vol. 7, North-Holland, Amsterdam, 1981, pp. 69141.Google Scholar
20. Venables, J. A., Spiller, G.D., and Hanbucken, M., Rep. Prog. Phys. 47 399 (1984).Google Scholar
21. Stroscio, J.A. and Pierce, D.T., Phys. Rev. B 49 8522 (1994).Google Scholar
22. Tsui, F., Wellman, J., Uher, C., and Clarke, R., Phys. Rev. Lett. 76 3164 (1996).Google Scholar
23. Villain, J.,J. Phys. I (France) 1 19 (1991).Google Scholar
24. Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M., and Orr, B.G., Phys. Rev. Lett. 72 116 (1994).Google Scholar
25. Stroscio, J.A., Pierce, D.T., Stiles, M., Zangwill, A., and Sander, L.M., Phys. Rev. Lett. 75 4246 (1995)Google Scholar
26. Thürmer, K., Koch, R., Weber, M., and Rieder, K.H., Phys. Rev. Lett. 75 1767 (1995).Google Scholar
27. Ernst, H.-J., Fabre, F., Folkerts, R., and Lapujoulade, J.,Phys. Rev. Lett. 72 112 (1994).Google Scholar
28. Zuo, J.-K. and Wendelken, J.F., Phys. Rev. Lett. 78,2791 (1997).Google Scholar
29. Smith, G.W., Pidduck, A.J., Whitehouse, C.R., Glasper, J.L., and Spowart, J.,J. Cryst. Growth, 127,966 (1993).Google Scholar
30. Nostrand, J.E. Van, Chey, S. Jay, Hasan, M.-A., Cahill, D.G., and Greene, J.E., Phys. Rev. Lett. 74,1127 (1995).Google Scholar
31. Elliott, W.C., Miceli, P.F., Tse, T., and Stephens, P.W., Physica B 221 65 (1996); ibid, Phys. Rev. B 54, 17938 (1996).Google Scholar
32. Krug, J., Plischke, M., and Siegert, M., Phys. Rev. Lett. 70 3271 (1993).Google Scholar
33. Siegert, M. and Plischke, M., Phys. Rev. Lett. 73 1517 (1994).Google Scholar
34. Family, F. and Amar, J.G.,Mat. Res. Soc. Proc. 399 67 (1996); J.G. Amar and F. Family,Mat. Res. Soc. Proc. 399,95(1996).Google Scholar
35. Amar, J.G. and Family, F., Phys. Rev. B 54 14742 (1996)Google Scholar
36. Amar, J.G. and Family, F., Surf. Sci. 365,177 (1996).Google Scholar
37. Evans, J.W., Sanders, D.E., Thiel, P. A., and DePristo, A.E., Phys. Rev. B 41 5410 (1990); H.C. Kang and J.W. Evans, Surface Science 271, 321 (1992).Google Scholar
38. He, Y.L., Yang, H.N., Lu, T.M., and Wang, G.C., Phys. Rev. Lett. 69 3770 (1992).Google Scholar
39. Amar, J.G. and Family, F., Phys. Rev. B 54 14071 (1996).Google Scholar
40. Wang, S.C. and Ehrlich, G., Phys. Rev. Lett. 70,41 (1993).Google Scholar
41. Amar, J.G. and Family, F., Phys. Rev. Lett. 77,4584 (1996)Google Scholar