Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T10:16:22.519Z Has data issue: false hasContentIssue false

Sb-Te Phase-change Nanowires by Templated Electrodeposition

Published online by Cambridge University Press:  07 June 2012

C. A. Ihalawela
Affiliation:
Department of Physics and Astronomy, Ohio University, Athens, OH45701
R. E. Cook
Affiliation:
Electron Microscopy Center, Argonne National Lab, Argonne, IL 60439
X. M. Lin
Affiliation:
Center for Nanoscale Materials, Argonne National Lab, Argonne, IL 60439
H. H. Wang
Affiliation:
Materials Science Division, Argonne National Lab, Argonne, IL 60439
G. Chen
Affiliation:
Department of Physics and Astronomy, Ohio University, Athens, OH45701
Get access

Abstract

Phase-change memory materials (PCMMs) are semiconductors that exhibit rapid order-disorder transition under electrical or optical pulse excitation. Currently thin-film-based PCMMs play a dominant role in fabrication of non-volatile memory devices. In contrast, phase-change nanowires (PCNWs) have the potential to overcome future challenges such as high data density and low power consumption. Among the various methods to synthesize PCNWs, the vapor-liquid-solid method has been reported previously. In this paper, we report synthesis of Sb-Te PCNWs using a templated electrochemical method. Nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. Sb-Te PCNWs with different compositions, diameters and aspect ratios were grown inside the AAO template by electrodeposition. Composition and structure of these nanowires were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. It is found that electrodeposition through nanosized channels results in materials that are quite different from those electrodeposited on unrestricted surface. The mechanism of nanowire formation inside the channels of AAO template is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Raoux, S. et al. ., IBM J. Res. & Dev. 52, 4/5, July/September, (2008).Google Scholar
2. Yamada, N., Ohno, E., Nishiuchi, K., and Akahira, N., J. Appl. Phys. 69, No. 5, 28492856, (1991).Google Scholar
3. Suh, D. S., Lee, E., Kim, K. H. P., Noh, J. S., Shin, W. C., Kang, Y. S., Kim, C., Khang, Y., Yoon, H. R., and Jo, W., Appl. Phys. Lett. 90, No. 2, 023101 (2007).Google Scholar
4. Soares, B. F., Jonson, F., and Zheludev, N. I., Phys. Rev. Lett. 98, No. 15, 153905 (2007).Google Scholar
5. Choi, H. S., Seol, K. S., Takeuchi, K., Fujita, J., and Ohki, Y., Jpn. J. Appl. Phys. 44, No. 10, 77207722, (2005).Google Scholar
6. Yoon, H. R., Jo, W., Lee, E. H., Lee, J. H., Kim, M., Lee, K. Y., and Khang, Y., J. Non-Cryst. Solids. 351, No. 43, 34303434, (2005).Google Scholar
7. Zhang, Y., Wong, H.-S. P., Raoux, S., Cha, J. N., Rettner, C. T., Krupp, L. E., Topuria, T., Milliron, D. J., Rice, P. M., and Jordan-Sweet, J., Appl.Phys. Lett. 91, No. 13, 13104, (2007).Google Scholar
8. Cha, J. N., Zhang, Y., Wong, H.-S. P., Raoux, S., Rettner, C., Krupp, L., and Deline, V., Chem.Mater. 19, No. 4, 839843, (2007).Google Scholar
9. Raoux, S., Zhang, Y., Milliron, D., Cha, J., Caldwell, M., Rettner, C. T., Jordan-Sweet, J., and Wong, H.-S. P., X-ray Diffraction Studies of Phase Change Nanoparticles Produced by Self-Assembly-Based Lithographic Techniques, (Proc. Eur. Symp. Phase Change and Ovonic Science, Zermatt, Switzerland, Sep 2007), paper F0119.Google Scholar
10. Raoux, S., Rettner, C. T., Jordan-Sweet, J. L., Kellock, A. J., Topuria, T., Rice, P. M., and Miller, D. C., J. Appl. Phys. 102, 9, 94305 (2007).Google Scholar
11. Jung, Y., Lee, S.-H., Ko, D.-K., and Agarwal, R., J. Am. Chem. Soc. 128, No. 43, 1402614027, (2006).Google Scholar
12. Lee, S.-H., Ko, D.-K., Jung, Y., and Agarwal, R., Appl. Phys. Lett. 89, No. 22, 223116, (2006).Google Scholar
13. Sun, X., Yu, B., and Meyyappan, M., Appl. Phys. Lett. 90, No. 18, 183116, (2007).Google Scholar
14. Meister, S., Peng, H., McIlwrath, K., Jarausch, K., Zhang, X. F., and Cui, Y., Nano Lett. 6, No. 7, 15141517, (2006).Google Scholar
15. Raoux, S., Rettner, C. T., Jordan-Sweet, J., Deline, V. R., Philipp, J. B., and Lung, H.-L., Scaling Properties of Phase Change Nanostructures and Thin Films, (Proc. Eur. Symp. Phase Change and Ovonic Science, Grenoble, France, May 2006), pp. 127134.Google Scholar
16. Satoh, H., Sugawara, K., and Tanaka, K., J. Appl. Phys. 99, No. 2, 024306, (2006).Google Scholar
17. Hamann, H. F., O’Boyle, M., Martin, Y. C., Rooks, M., and Wickramasinghe, H. K., Nat. Mater. 5, No. 5, 383387, (2006).Google Scholar
18. Gotoh, T., Sugawara, K., and Tanaka, K., Jpn. J. Appl. Phys. 43, No. 6B, L818L821, (2004).Google Scholar
19. Raoux, S., Scaling properties of phase change materials, edited by Raoux, S. and Wuttig, M., Phase Change Materials (Springer Science Publishers, New York, 2009), p 111114 Google Scholar
20. Ovshinsky, S. R., Phys. Rev. Lett. 21, 1450, (1968).Google Scholar
21. Feinleib, J., de Neufville, J., Moss, S.C., Ovshinsky, S. R., Appl. Phys. Lett. 18, 254, (1971).Google Scholar
22. Adler, D., Henisch, H. K., Mott, N., Rev. Mod. Phys., 50, 209, (1978).Google Scholar
23. Hudgens, S., Johnson, B., MRS Bull. 11, 829, (2004).Google Scholar
24. Lee, J. S., Brittman, S., Yu, D. and Park, H., J. Am. Chem. Soc. 130, 62526258, (2008).Google Scholar
25. Zuev, Y. M., Lee, J. S., Galloy, C., Park, H. and Kim, P., Nano Lett. 10, 30373040, (2010).Google Scholar
26. Christian, P. and O’Brien, P., J. Mater. Chem. 15, 49494954, (2005).Google Scholar
27. Jin, C., Zhang, G., Qian, T., Li, X. and Yao, Z., J. Phys. Chem. B. 109, 14301432, (2005).Google Scholar
28. Kim, M. Y., Park, K. W. and Oh, T. S., J. Korean Phys. Soc. 53, 266270, (2008).Google Scholar
29. Pinisetty, D., Gupta, M., Karki, A. B., Youngc, D. P. and Devireddy, R. V., J. Mater. Chem. 21, 40984107, (2011).Google Scholar
30. Chung, H-S., Jung, Y., Kim, S. C., Kim, D. H., Oh, K. H. and Agarwal, R., Nano Lett., 9, No. 6, (2009).Google Scholar
31. Masuda, H. and Fukuda, K., Science 268, 1466, (1995).Google Scholar
32. Wang, H. H., Han, C. Y., Willing, G. A. and Xiao, Z., Mat. Res. Soc. Symp. Proc. 775, P4.8, (2003).Google Scholar
33. Zhao, X., Seo, S-K., Lee, U-J. and Lee, K-H., J. Electrochem. Soc. 154 ,10, C553C557, (2007).Google Scholar
34. Huang, Q., Kellock, A. J. and Raoux, S., J. Electrochem. Soc. 155, D104D109, (2008).Google Scholar