Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:31:24.776Z Has data issue: false hasContentIssue false

Saxs Characterization of Pyrolytic Carbon Blacks

Published online by Cambridge University Press:  10 February 2011

B. Sahouli
Affiliation:
Physique des Matériaux, B 5, Université de Liège, 4000 Liège (Belgium)
S. Blacher
Affiliation:
Physique des Matériaux, B 5, Université de Liège, 4000 Liège (Belgium)
F. Brouers
Affiliation:
Physique des Matériaux, B 5, Université de Liège, 4000 Liège (Belgium)
R. Sobry
Affiliation:
Physique des Matériaux, B 5, Université de Liège, 4000 Liège (Belgium)
G. van den Bossche
Affiliation:
Physique des Matériaux, B 5, Université de Liège, 4000 Liège (Belgium)
H. Darmstadt
Affiliation:
Département de génie chimique, Université Laval Québec, Canada, GIK 7P4 (Canada)
C. Roy
Affiliation:
Département de génie chimique, Université Laval Québec, Canada, GIK 7P4 (Canada)
Get access

Abstract

The surface fractal dimension (Ds) of pyrolytic carbon blacks (CBp) was determined using small angle X-ray scattering (SAXS). The CBp were produced by vacuum pyrolysis of used tires at different temperatures and pressures. For the CBp a dependence of the pyrolysis conditions on the fractal dimension was observed. The fractal dimension decreases, suggesting a smother surface, with increasing pyrolysis pressure and to a lesser intent with increasing pyrolysis temperature. Earlier SIMS and ESCA investigations have indicated that an evident correlation exists between the surface morphology and the surface chemistry of the CBp. According to these investigations, the smoothing of the CBp surface is due to the formation of carbonaceous deposits from adsorbed hydrocarbons on the CBp.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williams, P. T., Besler, S. and Taylor, D. T., Fuel 69, p. 14 74 (1990).Google Scholar
2. Williams, P. T. and Taylor, D. T., Pyrolysis and Gasification, Ferrero, G. L., Maniatis, K., Buekens, A. and Bridgwater, A. V., Elsevier Applied Science, London, UK, 1989, pp. 486491.Google Scholar
3. Cypres, R. and Bettens, B., Pvrolysis and Gasification, Ferrero, G. L., Maniatis, K., Buekens, A. and Bridgwater, A. V., Elsevier Applied Science, London, UK, 1989, pp. 209229.Google Scholar
4. Roy, C., Labrecque, B. and Caumia, de B., , B., Resources, Conversion and Recycling 4, p.203, (1990).Google Scholar
5. Roy, C. and Unsworth, J., Pvrolysis and Gasification, Ferrero, G. L., Maniatis, K., Buekens, A. and Bridgwater, A. V., Elsevier Applied Science, London, UK, 1989, pp. 180189.Google Scholar
6. Pakdel, H., Roy, C., Aubin, H., Jean, G. and Coulombe, S., Environ. Sci. Technol. 25, p. 1646, (1991).Google Scholar
7. Mirmiran, S., Pakdel, H. and Roy, C., J. Analy. Appl. Pyrolysis 22, p.205, (1992).Google Scholar
8. Leblanc, J. L., Roy, C., Mirmiran, S., Benallal, B. and Schwerdtfeger, A.E., Kautsch. Gummi Kunstst, in press.Google Scholar
9. Roy, C., Rastegar, A., Kaliaguine, S., Darmstadt, H. and Tochev, V., Plastics, Rubber and Composites Processing and Applications 23, p.21, (1995).Google Scholar
10. Darmstadt, H., Roy, C. and Kaliaguine, S., Carbon 32, p. 1399, (1994).Google Scholar
11. Darmstadt, H., Roy, C. and Kaliaguine, S., Kautsch. Gummi Kunstst. 47, p.891, (1994).Google Scholar
12. Darmstadt, H., Roy, C., Kaliaguine, S., Sahouli, B., Blacher, S., Pirard, R. and Brouers, F., Rubber. Chem. Technol., 68, p.330, (1995).Google Scholar
13. Dufeu, J.B., Roy, C., Aji, A., Choplin, L., J. Appl. Polym. Sci. 46, p. 2159, (1992).Google Scholar
14. Donnet, J.B., Custoddro, E., C. R. Acad. Sci. Ser. II 314, p.579, (1992).Google Scholar
15. Kim, S.J., Reneker, D. H., Rubber Chem. Techn. 66, p.559, (1993).Google Scholar
16. Wang, M.J., Wolff, S., Freund, B., Rubber. Chem. Techn. 67, p.27, (1994).Google Scholar
17. Niedermeier, W., Stierstorfer, J., Kreitmeier, S., Metz, O., G'ritz, D, Rubb. Chem. Techn. 67, p. 148, (1994).Google Scholar
18. Donnet, J. B., in The second International Conference on Carbon Black, (Mulhouse, France, 27–30 Sept. 1993), pp. 19.Google Scholar
19. Martin, J.E., Hurd, A. J., J. Appl. Cryst., 20, pp.61, (1987).Google Scholar
20. Wong, P-Z., Cao, Q-Z., Phys. Rev B, 45, p.7627, (1992).Google Scholar
21. Bale, H.D., Schmidt, P.W., Phys. Rev. Lett, 53, p.596, (1984)Google Scholar
22. Wong, P.Z., Bray, A.J., Phys. Rev. Lett. 60, p. 1344, 13 (1988)Google Scholar
23. Rastegar, A., M. Sc. Thesis, Université Laval, Québec (1989).Google Scholar
24. Normann, D. Y., The Vanderbilt Rubber Handbook 13th. Edition, Ohn, R. F., Vanderbilt Company Inc., Norwalt, Connecticut, USA, 1990, pp. 397426.Google Scholar
25. Albers, P., Freund, B., Seibold, K., Wolff, S., Kautsch. Gummi. Kunstst, 45, p.449, (1992).Google Scholar
26. Pfeifer, P., Cole, M. W., New J. Chem 14, p. 221, (1990).Google Scholar
27. G¨ritz, D., Niedermeier, W. and Raab, H., in Extended Abstracts (Eurofillers 95, Mulhouse, France, Sept. 11–14, 1995), pp. 183.Google Scholar