Article contents
The Salton Sea Geothermal Field as a Natural Analog for the Near-Field in a Salt High-Level Nuclear Waste Repository
Published online by Cambridge University Press: 26 February 2011
Abstract
The Salton Sea Geothermal Field (SSGF), on the delta of the Colorado River in southern California, is being studied as a natural analog for the near-field environment of proposed nuclear waste repositories in salt. A combination of mineralogical and geochemical methods is being employed to develop a three dimensional picture of temperature, salinity, lithology, mineralogy, and chemistry of reactions between the reservoir rocks and the hot brines. Our aim is to obtain quantitative data on mineral stabilities and on mobilities of the naturally occurring radionuclides of concern in Commercial High-Level Waste (CHLW). These data will be used to validate the EQ3/6 geochemical code under development to model the salt near-field repository behavior.
Maximum temperatures encountered in wells in the SSGF equal or exceed peak temperatures expected in a salt repository. Brines produced from these wells have major element chemistry similar to brines from candidate salt sites. Relative to the rocks, these brines are enriched in Na, Mn, Zn, Sr, Ra and Po, depleted in Ba, Si, Mg, Ti, and Al, and strongly depleted in U and Th. However the unaltered rocks contain only about 2–3 ppm of U and 4–12 ppm of Th, largely in detrital epidotes and zircons. Samples of hydrothermally altered rocks from a wide range of temperature and salinity show rather similar uniform low concentrations of these elements, even when authigenic illite, chlorite, epidote and feldspar are present. These observations suggest that U and Th are relatively immobile in these hot brines. However Ra, Po, Cs and Sr are relatively mobile. Work is continuing to document naturally occurring radionuclide partitioning between SSGF minerals and brine over a range of temperature, salinity, and lithology.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1985
References
- 2
- Cited by