Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T06:49:55.820Z Has data issue: false hasContentIssue false

Roughening and Preroughening of Diamond-Cubic {111} Surfaces

Published online by Cambridge University Press:  15 February 2011

Donald L. Woodraska
Affiliation:
Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931–1295
John A. Jaszczak
Affiliation:
Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931–1295
Get access

Abstract

Using a new solid-on-solid model that correctly takes into account the diamond-cubic crystal structure, both a roughening transition at temperature TR and a distinct preroughening transition at TPR≈0.43TR are found to exist on {111}surfaces of diamond-cubic materials. Results are presented for height-difference correlation functions, surface specific heats, step energies, etch rates, and a preroughening order parameter. Preroughening appears to arise naturally in our nearest-neighbor bond model from the entropic freedom available in the non-trivial crystal structure suggesting that preroughening may be more common than previously anticipated. Preroughening is shown to dramatically lower step energies and step-energy anisotropy on the {111} surface. Preroughening of Si{111} may have been seen in experiments by Noh et al. [Phys. Rev. B 48, 1612 (1993)].

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] See for example: Beijeren, H. van and Nolden, I., in Structure and Dynamics of Surfaces II: Phenomena, Models and Methods. Schommers, W. and P., von Blanckenhagen, editors. (Springer-Verlag, Berlin, 1987), p. 259; M.Wortis, in Chemistry and Physics of Solid Surfaces Vol. VII. R.Vanselow, editor. (Springer Verlag, Berlin, 1988) p. 367.Google Scholar
[2] Rommelse, K. and Nijs, M. den, Phys. Rev. Lett. 59, 2578 (1987).Google Scholar
[3] Weichman, P. B., Day, P. and Goodstein, D., Phys. Rev. Lett. 74, 418 (1995); J. M.Phillips and J. Z.Larese, Phys. Rev. Lett. 75, 4330 (1995); P. B.Weichman and D.Goodstein, Phys. Rev. Lett. 75, 4331 (1995).Google Scholar
[4] Prestipino, S., Santoro, G. and Tosatti, E., Phys. Rev. Lett. 75, 4468 (1995).Google Scholar
[5] Woodraska, D. L., LaCosse, J. and Jaszczak, J. A., MRS Symp. Proc. 389, 209 (1995).Google Scholar
[6] Woodraska, D. L. and Jaszczak, J. A., Surf. Sci. (In Press).Google Scholar
[7] Noh, D. Y., Blum, K. I, Ramstad, M. J., and Birgeneau, R. J., Phys. Rev. B 48, 1612 (1993).Google Scholar
[8] Shugard, W. J., Weeks, J. D. and Gilmer, G. H., Phys. Rev. Lett. 41, 1399 (1978).Google Scholar
[9] Swendsen, R. H., Phys. Rev. B. 15, 5421 (1977).Google Scholar
[10] Jaszczak, J. A., Yang, B. and Saam, W. F., Phys. Rev. B 39, 9289 (1989).Google Scholar
[11] Barber, M. N. and Selke, W., J. Phys. A: Math. Gen. 15, L617–L623 (1982).Google Scholar
[12] Beijeren, H. van, Phys. Rev. Lett. 38, 993 (1977); R. H.Swendsen, Phys. Rev. B 17, 3710 (1978).Google Scholar
[13] Nijs, M. den and Rommelse, K., Phys. Rev. B 40, 4709 (1989).Google Scholar
[14] Hessel, H. E., Feltz, A., Reiter, M., Memmert, U. and Behm, R. J., Chem. Phys. Lett. 186, 275 (1991).Google Scholar
[15] Woodraska, D. L. and Jaszczak, J. A. (unpublished).Google Scholar
[16] Enckevort, W. J.P. van and Eerden, J. P. van der, J. Cryst. Growth 47, 501 (1979).Google Scholar
[17] Tan, A. K., Ong, C. K. and Tan, H. S., Semicon. Sci. Technol. 3, 1 (1988).Google Scholar