Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:47:18.502Z Has data issue: false hasContentIssue false

Room Temperature Oxidation of Silicon Catalyzed by Cu3Si

Published online by Cambridge University Press:  21 February 2011

J.M.E. Harper
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
A. Charai
Affiliation:
Faculte de St. Jerome, 13397 Marseille, France
L. Stolt
Affiliation:
Institute for Microelectronics, 16428 Kista, Sweden
F.M. d'Heurle
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
P.M. Fryer
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

We demonstrate remarkably rapid oxidation of (100) silicon at room temperature catalyzed by the presence of Cu3Si. Thermal oxidation of Si is normally carried out at temperatures above 700°C. Oxidation of many metal silicides occurs more rapidly than that of Si, but under controlled conditions results in a surface layer of SiO2. In contrast, the oxidation process described here produces a thick layer of SiO2 underneath the copper-rich surface layer. The SiO2 layer grows spontaneously to over one micrometer in thickness in several weeks in air at room temperature. Analysis by Rutherford backscattering, Auger electron spectroscopy, cross-sectional transmission electron microscopy and scanning electron microscopy reveals the presence of Cu3Si at the buried SiO2/Si interface, epitaxially related to the underlying Si substrate. Catalytic action by this silicide phase appears responsible for the unusual oxidation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. d'Heurle, F. M., Cros, A., Frampton, R. D. and Irene, E. A., Phil. Mag. B 55, 291 (1987).Google Scholar
2. d'Heurle, F. M., Thin Solid Films 105, 285 (1983).Google Scholar
3. Lien, C. D., Bartur, M. and Nicolet, M.-A., Mater. Res. Soc. Symp. Proc. 25, 51 (1984).Google Scholar
4. Cros, A., Derrien, J. and Salvan, F., Surface Science 110, 471 (1981).Google Scholar
5. Bahnholzer, G. F. and Burrell, M. C., Surface Science 176, 125 (1986).Google Scholar
6. Cytermann, C., Brener, R., Sacher, E., Pratt, B. and Weil, R., Appl. Phys. Lett. 52, 191 (1988).Google Scholar
7. Solberg, J. K., Acta Cryst. A 34, 684 (1978).Google Scholar
8. Massalski, T. B., ed., “Binary Alloy Phase Diagrams, Vol.1", p. 960 (American Society for Metals, 1986).Google Scholar
9. Stolt, L. and d'Heurle, F.M., to be published.Google Scholar
10. Weber, G., Gillot, B. and Barret, P., Phys. Stat. Sol. (a) 75, 567 (1983).Google Scholar
11. Ottaviani, G., Thin Solid Films 140, 3 (1986).Google Scholar