Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:28:37.888Z Has data issue: false hasContentIssue false

Room Temperature Fabrication of Micro-Crystalline Silicon Films for Tft's By Ecr Pecvd

Published online by Cambridge University Press:  22 February 2011

Yoo-Chan Jeon
Affiliation:
Dept. of Metallurgical Eng., Seoul National University, Seoul, 151-742, Korea
Seok-Woon Lee
Affiliation:
Dept. of Metallurgical Eng., Seoul National University, Seoul, 151-742, Korea
Seung-Ki Joo
Affiliation:
Dept. of Metallurgical Eng., Seoul National University, Seoul, 151-742, Korea
Get access

Abstract

Microcrystalline silicon films were formed at room temperature without hydrogen dilution by ECR PECVD. Microwave power more than 400 W was necessary to get crystalline films and the crystallinity increased with the power thereafter. Addition of hydrogen and argon enhanced the crystalline phase formation and the deposition rate, the reason of which was found that hydrogen etched silicon films and argon addition drastically increased the etch rate. Annealing of the films showed that microcrystalline silicon films formed by ECR PECVD have a small fraction of amorphous phase. TFT's using silicon nitride and doped/undoped microcrystalline silicon films were fabricatedd with whole processes at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iompson, M. I. et al. , IEEE rrans. Electron Dev., 29, 1643 (1982)Google Scholar
2. Mackenzie, K. D. et al. , Appl. Phys. A, 31, 87 (1983)Google Scholar
3. Chen, I., J. Appl. Phys., 50, 296 (1984)Google Scholar
4. Liu, C. I., Lee, K. H., Yu, C. H. D., Sung, J. J., Nagy, W. J., Kornblit, A., Kook, I., Olasupo, K. R., Druckemillerm, R. O., Fu, C. C., and Molloy, S. J., IEDM 92, 823 (1992)Google Scholar
5. Ikeda, S. et al. , IEDM 90, 469 (1990)Google Scholar
6. Mohri, M., Kakinuma, J., and Isuruoka, T., IEDM 92, 673 (1992)Google Scholar
7. Shimizu, K., Sukiura, O., and Matsumura, M., IEDM 92, 669 (1992)Google Scholar
8. Ilatalis, M. K., Kung, J., Kanicki, J., and Bright, A., MRS Proc., 182, 357 (1990)Google Scholar
9. Arai, H., Nakazawa, K., and Kohda, S., Appl. Phys. Lett., 46, 888 (1986)Google Scholar
10. Kanicki, J., Hasan, E., Kotecki, D. F., Takamori, T., and Griffith, J. H., MRS Proc., 149, 173 (1989)Google Scholar
11. rsai, C. C., Thompson, R., Donald, C., Ponce, F. A., Anderson, C. B., and Wacker, B., MRS Proc., 118, 49 (1988)Google Scholar
12. Drevillon, B., Solomon, I., and Fang, M, MRS Proc., 283, 659, (1993)Google Scholar
13. Ishihara, S., He, D., Akasaka, T., Ariki, Y., Nakata, M., and Shimizu, I., MRS Proc., 283, 489 (1993)Google Scholar
14. Jeon, Y. -C., Lee, H. -Y., and Joo, S. K., J. Electronic Mat., 21, 1119 (1992)Google Scholar
15. Bennett, H. E. and Bennett, J. M., in Physics of Thin Films., vol. 4, edited by Hass, C. and Thun, R. E. (Academic Press, London, 1984)Google Scholar
16. Habeke, G. and Jastrzebski, L., J. Electrochem. Soc., 137, 696 (1990)Google Scholar
17. Chapman, B., Glow Discharge Process (John Willy, New York, 1980)Google Scholar