Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T17:48:33.561Z Has data issue: false hasContentIssue false

Room Temperature Fabricated ZnO:Al with Elevated and Unique Light-Trapping Performance

Published online by Cambridge University Press:  20 June 2011

E. V. Johnson
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
C. Charpentier
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France TOTAL S.A. - Gas & Power, R&D Division, Tour La Fayette - 2 Place des Vosges - La Défense 6, 92 400 Courbevoie, France
T. Emeraud
Affiliation:
PV BU, EXCICO Group NV, Kempischesteenweg 305 bus 2, B-3500 Hasselt, Belgium
J.F. Lerat
Affiliation:
PV BU, EXCICO Group NV, Kempischesteenweg 305 bus 2, B-3500 Hasselt, Belgium
C. Boniface
Affiliation:
Process & Application Team, EXCICO France SAS, 13-21 Quai des Gresillons, F-92230 Gennevilliers, France
K. Huet
Affiliation:
Process & Application Team, EXCICO France SAS, 13-21 Quai des Gresillons, F-92230 Gennevilliers, France
P. Prod’homme
Affiliation:
TOTAL S.A. - Gas & Power, R&D Division, Tour La Fayette - 2 Place des Vosges - La Défense 6, 92 400 Courbevoie, France
P. Roca i Cabarrocas
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
Get access

Abstract

We present a novel ZnO:Al fabrication process consisting of room-temperature vacuum sputtering followed by an excimer laser annealing (ELA). The ELA treatment improves the optical transmission of the films, and the film resistivities (<1 mΩ·cm) remain stable or improve with increasing laser fluence up to 0.6 J/cm2, as the carrier density increases but the carrier mobility is degraded. This process is followed by a standard dilute HCl chemical texturing step, and produces substrates with suitable texture, conductivity, and transparency properties for thinfilm photovoltaic applications. Substrates resulting from this process display elevated haze levels (80% at 600 nm and 50% at 800 nm) after the wet-chemical etching step. Such substrates have been used to make single junction hydrogenated nanocrystalline silicon solar cells, and an increase in the short-circuit current of up to 2.2 mA/cm2 is observed compared to a substrate deposited by a standard room-temperature sputtering + wet-etch process. This gain is primarily due to increased photo-response in the red due to improved light-scattering, as at wavelengths greater than 600 nm, a gain in photocurrent of up to 1.7 mA/cm2 is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kluth, O., Rech, B., Houben, L., Wieder, S., Schöpe, G., Beneking, C., Wagner, H., Löffl, A., and Schock, H.W., Thin Solid Films 351 (1999) 247.10.1016/S0040-6090(99)00085-1Google Scholar
2. Agashe, C., Kluth, O., Hüpkes, J., Zastrow, U., and Rech, B., J. Appl. Phys. 95 (2004) 1911.10.1063/1.1641524Google Scholar
3. Kluth, O., Schöpe, G., Hüpkes, J., Agashe, C., Müller, J., Rech, B., Thin Solid Films 442 (2003) 80.10.1016/S0040-6090(03)00949-0Google Scholar
4. Kluth, O., Loffl, A., Wieder, S., et al. ., Proc. 26th, IEEE Photovoltaic Specialists Conf., Anaheim (1997) 715.Google Scholar
5. Kim, K.K., Tampo, H., Song, J.O., Seong, T.Y., Park, S.J., Lee, J.M., Kim, S.W., Fujita, S., Niki, S., Jpn. J. Appl. Phys. (2005) 4776.10.1143/JJAP.44.4776Google Scholar
6. Ozerova, I., Araba, M., Safarova, V.I., Marinea, W., Giorgiob, S., Sentisc, M., Nanaid, L., Appl. Surf. Sci. 226 (2004) 242.10.1016/j.apsusc.2003.11.038Google Scholar
7. Bhaumik, G.K., Nath, A.K., Basu, S., Mater. Sci. Eng. B 52 (1998) 25.Google Scholar
8. Yen, T., Strome, D., Jin Kim, Sung, Cartwright, A. N. and Anderson, W. A., J. Elec. Mater. 37 (2007) 764.Google Scholar
9. Meier, J., Fluckiger, R., Keppner, H., and Shah, A., Appl. Phys. Lett. 65 (1994) 860.10.1063/1.112183Google Scholar
10. Postava, K., Sueki, H., Aoyama, M., Yamaguchi, T., Murakami, K., and Isasaki, Y., Appl. Surf. Sci. 175-176 (2001) 543.10.1016/S0169-4332(01)00145-3Google Scholar
11. Yue, G., Sivec, L., Owens, J. M., Yan, B., Yang, J., and Guha, S., Appl. Phys. Lett. 95 (2009) 263501.10.1063/1.3279143Google Scholar
12. Li, H., Franken, R. H., Rath, J., and Schropp, R. E. I., Sol. Energy Mater. Sol. Cells 93, (2009) 338.10.1016/j.solmat.2008.11.013Google Scholar
13. Python, M., Madani, O., Dominé, D., Meillaud, F., and Vallat-Sauvain, E. and Ballif, C., Sol. Energy Mater. Sol. Cells 93 (2009) 1714.10.1016/j.solmat.2009.05.025Google Scholar