Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:52:34.739Z Has data issue: false hasContentIssue false

Room Temperature CW Operation of GaInAsSb/AlGaAsSb Quantum Well Lasers Emitting in the 2.2 to 2.3µm Wavelength Range

Published online by Cambridge University Press:  10 February 2011

C. Mermelstein
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, [email protected]
S. Simanowski
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, [email protected]
M. Mayer
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, [email protected]
R. Kiefer
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, [email protected]
J. Schmitz
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, [email protected]
M. Walther
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, [email protected]
J. Wagner
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, [email protected]
Get access

Abstract

We report on room temperature cw operation of type-I semiconductor quantum well (QW) laser diodes based on the GaInAsSb/AIGaAsSb/GaSb material system emitting beyond 2.2 µm. Lasing is observed in cw mode up to at least 320 K. A high internal quantum efficiency of 65% and a low internal loss coefficient of 5 cm1have been achieved for a single QW (SQW)large optical cavity laser at 280 K. An extrapolated threshold current density for infinite cavity length of 144 A/cm2and 55 A/cm2has been deduced for the 3 QW and SQW lasers, respectively, which scales with the number of QWs. A maximum cw light output power of 230 mW at 280 K heatsink temperature was obtained for a 3 QW large optical cavity laser with HR/AR coated mirror facets, mounted substrate-side down.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choi, H. K. and Eglash, S. J., IEEE J. Quantum Electron. 27, 1555 (1991).Google Scholar
2. Choi, H. K. and Eglash, S. J., Appl. Phys. Lett. 61, 1154 (1992).Google Scholar
3. Garbuzov, D. Z., Martinelli, R. U., Lee, H., York, P. K., Menna, R. J., Connolly, J. C., and Narayan, S. Y., Appl. Phys. Lett. 69, 2006 (1996).Google Scholar
4. Garbuzov, D. Z., Martinelli, R. U., Lee, H., Menna, R. J., York, P. K., DiMarco, L. A., Harvey, M. G., Matarese, R. J., Narayan, S. Y., and Connolly, J. C., Appl. Phys. Lett. 70, 2931 (1997).Google Scholar
5. Baranov, A. N., Cuminal, Y., Bertru, N., Alibert, C. and Joullie, A., Proc. SPIE 2997, 2 (1997).Google Scholar
6. Turner, G. W., Choi, H. K., and Manfra, M. J., Appl. Phys. Lett. 72, 876 (1998).Google Scholar
7. Simanowski, S., Walther, M., Schmitz, J., Herres, N., Fuchs, F., Maier, M., Mermelstein, C., Wagner, J., and Weimann, G., J. Crystal Growth 201, 849 (1999).Google Scholar
8. Krijn, M. P. C. M., Semicond. Sci. Technol. 6, 27 (1991).Google Scholar
9. Engelmann, R. W. H., Shieh, C-L., and Shu, C., in “Quantum Well Lasers”, edited by Zory, P. S. Jr, (Academic Press, San Diego, CA, 1993), p. 170.Google Scholar